Friday, September 20, 2019

Intermediate Algebra, Chapter 4, 4.2, Section 4.2, Problem 36

Solve the system of equations $\begin{equation}
\begin{aligned}

x + 3 + z =& 2 \\
4x + y + 2z =& -4 \\
5x + 2y + 3z =& -2

\end{aligned}
\end{equation}
$. If the system is inconsistent or has dependent equations, say so.


$
\begin{equation}
\begin{aligned}

-2x - 6y - 2z =& -4
&& -2 \times \text{ Equation 1}
\\
4x + y + 2z =& -4
&& \text{Equation 2}
\\
\hline

\end{aligned}
\end{equation}
$




$
\begin{equation}
\begin{aligned}

2x - 5y \phantom{+2z} =& -8
&& \text{Add}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

-3x - 9y - 3z =& -6
&& -3 \times \text{ Equation 1}
\\
5x + 2y + 3z =& -2
&& \text{Equation 3}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

2x - 7y \phantom{+3z} =& -8
&& \text{Add}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

2x - 5y =& -8
&& \text{New Equation 2}
\\
2x -7y =& -8
&& \text{New Equation 3}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

2x - 5y =& -8
&&
\\
-2x + 7y =& 8
&& -1 \times \text{ New Equation 3}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\phantom{2x + } 2y =& 0
&& \text{Add}
\\
y =& 0
&& \text{Divide each side by $2$}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

2x - 5(0) =& -8
&& \text{Substitute } y = 0 \text{ in New Equation 2}
\\
2x =& -8
&& \text{Multiply}
\\
\\
x =& -4
&& \text{Divide each side by $2$}

\end{aligned}
\end{equation}
$




$
\begin{equation}
\begin{aligned}

-4 + 3(0) + z =& 2
&& \text{Substitute } x = -4 \text{ and } y = 0 \text{ in Equation 1}
\\
-4 + 0 + z =& 2
&& \text{Multiply}
\\
z =& 6
&& \text{Add each side by $4$}

\end{aligned}
\end{equation}
$


The ordered triple is $\displaystyle \left( -4,0,6 \right)$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...