Friday, August 4, 2017

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 80

Find limxa2a3xx4a3a2xa4ax3
By applying L'Hospital's Rule...


limxa2a3xx4a3a2xa4ax3=limxa12(2a3xx4)12(2a34x3)a(13)(a2x)23(a2)014(ax3)34(3ax2)=limxa2a34x322a3xx4a33(a2x)233ax24(ax3)34=limxa2(a32x3)22a3xx4a33(a43x23)34[a(134)x(294)]=limxaa32x32a3xx4a(343)3(x23)34[a14x14]=limxa(3x23)(a32x3)a53(2a3xx4)3(x23)2a3xx434(ax)14


If we substitute the value of the limit,


=(3x23)(a32x3)a53(2a3xx4)3(x23)2a3xx434(ax)14=(3a23)(a3)a53a43(a23)a434(1)=3a113a1133a8334=4a1133a83(43)=169a11883=169a

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...