Wednesday, August 16, 2017

Calculus of a Single Variable, Chapter 8, 8.2, Section 8.2, Problem 29

We shall use partial integration:
int u dv=uv-int v du
Therefore, we have
int e^(-3x)sin5xdx=|[u=e^(-3x),dv=sin5xdx],[du=-3e^(-3x)dx,v=-1/5cos5x]|=
-1/5e^(-3x)cos5x-3/5int e^(-3x)cos5xdx=|[u=e^(-3x),dv=cos5xdx],[du=-3e^(-3x)dx,v=1/5sin5x]|=
-1/5e^(-3x)cos5x-3/25e^(-3x)sin5x-9/25inte^(-3x)sin5xdx
We can see that we have the same integral as the one we've started with. In other words we have the following equation
int e^(-3x)sin5xdx=-1/5e^(-3x)cos5x-3/25e^(-3x)sin5x
-9/25inte^(-3x)sin5xdx
Let us add 9/25int e^(-3x)sin5xdx to the whole equation.
34/25int e^(-3x)sin5xdx=-1/5e^(-3x)cos5x-3/25e^(-3x)sin5x
Now we only need to multiply the whole equation by 25/34 to obtain the solution to our starting problem.
int e^(-3x)sin5xdx=-5/34e^(-3x)cos5x-3/34e^(-3x)sin5x+c, c in RR

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...