Thursday, August 10, 2017

Use the given differential equation for electrical circuits given by L dI/dt + RI = E In this equation, I is the current, R is the resistance, L is the inductance, and E is the electromotive force (voltage). Solve the differential equation for the current given a constant voltage E_0

Given ,
L (dI)/(dt) + RI = E
=> L I' + RI = E
now dividing with L on both sides we get
=> (LI')/L +(R/L)I=(E/L)
=>I' +(R/L)I=(E/L)-----(1)
which is a linear differential equation of first order
Solve the differential equation for the current given a constant voltage E_0,
so E = E_0.
So , Re-writing the equation (1) as,
(1) => I' +(R/L)I=(E_0/L) -----(2)
On comparing the above equation with the general linear differential equation we get as follows
y' +py=q ---- (3)       -is the general linear differential equation form.
so on comparing the equations (2) and (3)
we get,
p= (R/L) and q= (E_0/L)
so , now
let us find the integrating factor (I.F)= e^(int p dt)
 
so now ,I.F = e^(int (R/L) dt)
= e^((R/L)int (1) dt)
= e^((R/L)(t)) =e^(((Rt)/L))
So , now the general solution for linear differential equation is
I * (I.F) = int (I.F) q dt +c
=>I*(e^(((Rt)/L))) = int (e^(((Rt)/L))) (E_0/L) dt +c
=>Ie^((Rt)/L) = E_0/L int e^((Rt)/L) dt +c -----(4)
 Now let us evaluate the part
int e^((Rt)/L) dt
this is of the form
int e^(at) dt and so we know it is equal to
= (e^(at))/a
so , now ,
int e^((Rt)/L) dt
where a= R/L
so ,
int e^((Rt)/L) dt = e^((Rt)/L)/(R/L)
now substituting  in the   equation (4) we get ,
I*(e^(((Rt)/L))) = (E_0/L)(e^(((Rt)/L)))/(R/L) +c
I = ((E_0/L)(e^(((Rt)/L)))/(R/L)+c) /((e^(((Rt)/L))))
I = ((E_0/L)(e^(((Rt)/L)))/(R/L)) /((e^(((Rt)/L))))+c((e^(((-Rt)/L))))
upon cancelling L and   e^((Rt)/L) , we get
= E_0/R +c((e^(((-Rt)/L))))
so ,
I = E_0/R +ce^((-Rt)/L)   is the solution

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...