Given ,
L (dI)/(dt) + RI = E
=> L I' + RI = E
now dividing with L on both sides we get
=> (LI')/L +(R/L)I=(E/L)
=>I' +(R/L)I=(E/L)-----(1)
which is a linear differential equation of first order
Solve the differential equation for the current given a constant voltage E_0,
so E = E_0.
So , Re-writing the equation (1) as,
(1) => I' +(R/L)I=(E_0/L) -----(2)
On comparing the above equation with the general linear differential equation we get as follows
y' +py=q ---- (3) -is the general linear differential equation form.
so on comparing the equations (2) and (3)
we get,
p= (R/L) and q= (E_0/L)
so , now
let us find the integrating factor (I.F)= e^(int p dt)
so now ,I.F = e^(int (R/L) dt)
= e^((R/L)int (1) dt)
= e^((R/L)(t)) =e^(((Rt)/L))
So , now the general solution for linear differential equation is
I * (I.F) = int (I.F) q dt +c
=>I*(e^(((Rt)/L))) = int (e^(((Rt)/L))) (E_0/L) dt +c
=>Ie^((Rt)/L) = E_0/L int e^((Rt)/L) dt +c -----(4)
Now let us evaluate the part
int e^((Rt)/L) dt
this is of the form
int e^(at) dt and so we know it is equal to
= (e^(at))/a
so , now ,
int e^((Rt)/L) dt
where a= R/L
so ,
int e^((Rt)/L) dt = e^((Rt)/L)/(R/L)
now substituting in the equation (4) we get ,
I*(e^(((Rt)/L))) = (E_0/L)(e^(((Rt)/L)))/(R/L) +c
I = ((E_0/L)(e^(((Rt)/L)))/(R/L)+c) /((e^(((Rt)/L))))
I = ((E_0/L)(e^(((Rt)/L)))/(R/L)) /((e^(((Rt)/L))))+c((e^(((-Rt)/L))))
upon cancelling L and e^((Rt)/L) , we get
= E_0/R +c((e^(((-Rt)/L))))
so ,
I = E_0/R +ce^((-Rt)/L) is the solution
Thursday, August 10, 2017
Use the given differential equation for electrical circuits given by L dI/dt + RI = E In this equation, I is the current, R is the resistance, L is the inductance, and E is the electromotive force (voltage). Solve the differential equation for the current given a constant voltage E_0
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
Robinson Crusoe, written by Daniel Defoe, is a novel. A novel is a genre defined as a long imaginative work of literature written in prose. ...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
A tempest is a violent storm and considering that the first scene of the play takes place in such a storm, the title is quite fitting. It is...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
No comments:
Post a Comment