Monday, August 21, 2017

College Algebra, Chapter 7, 7.1, Section 7.1, Problem 42

Find the complete solution of the system

$
\left\{
\begin{equation}
\begin{aligned}

-4x - y + 36z =& 24
\\
x - 2y + 9z =& 3
\\
-2x + y + 6z =& 6

\end{aligned}
\end{equation}
\right.
$


We first write the augmented matrix of the system and using Gauss-Jordan Elimination.

$\left[ \begin{array}{cccc}
-4 & -1 & 36 & 24 \\
1 & -2 & 9 & 3 \\
-2 & 1 & 6 & 6
\end{array} \right]$

$\displaystyle \frac{-1}{4} R_1$

$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{1}{4} & -9 & -6 \\
1 & -2 & 9 & 3 \\
-2 & 1 & 6 & 6
\end{array} \right]$

$\displaystyle R_3 + 2 R_1 \to R_3$

$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{1}{4} & -9 & -6 \\
1 & -2 & 9 & 3 \\
0 & \displaystyle \frac{3}{2} & -12 & -6
\end{array} \right]$

$\displaystyle \frac{2}{3} R_3$

$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{1}{4} & -9 & -6 \\
1 & -2 & 9 & 3 \\
0 & 1 & -8 & -4
\end{array} \right]$

$\displaystyle R_2 - R_1 \to R_2$

$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{1}{4} & -9 & -6 \\
0 & \displaystyle \frac{-9}{4} & 18 & 9 \\
0 & 1 & -8 & -4
\end{array} \right]$

$\displaystyle \frac{-4}{9} R_2$

$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{1}{4} & -9 & -6 \\
0 & 1 & -8 & -4 \\
0 & 1 & -8 & -4
\end{array} \right]$

$\displaystyle R_3 - R_2 \to R_3$

$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{1}{4} & -9 & -6 \\
0 & 1 & -8 & -4 \\
0 & 0 & 0 & 0
\end{array} \right]$

$\displaystyle R_1 - \frac{1}{4} R_2 \to R_1$

$\left[ \begin{array}{cccc}
1 & 0 & -7 & -5 \\
0 & 1 & -8 & -4 \\
0 & 0 & 0 & 0
\end{array} \right]$


This is in reduced row-echelon form since the last row represents the equation $0 = 0$, we may discard it. So the last matrix corresponds to the system


$
\left\{
\begin{array}{ccccc}
x & & - 7z & = & -5 \\
& y & - 8z & = & -4
\end{array}
\right.
$


To obtain the complete solution, we solve for the leading variables $x$ and $y$ in terms of the nonleading variable $z$ and we let $z$ be any real numbers. Thus, the complete solution is


$
\begin{equation}
\begin{aligned}

x =& 7t - 5
\\
y =& 8t - 4
\\
z =& t

\end{aligned}
\end{equation}
$


where $t$ is any real number.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...