Monday, August 28, 2017

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 23

Find the derivative of $\displaystyle g(x) = \sqrt{1 + 2x}$ using the definition and the domain of its derivative.

Using the definition of derivative


$
\begin{equation}
\begin{aligned}

\qquad f'(x) &= \lim_{h \to 0} \frac{g(x + h) - g(x)}{h}
&&
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{\sqrt{1 + 2(x + h)} - \sqrt{1 + 2x}}{h}
&& \text{Substitute $g(x + h)$ and $g(x)$}
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{\sqrt{1 + 2x + 2h} - \sqrt{1 + 2x}}{h} \cdot \frac{\sqrt{1 + 2x + 2h} + \sqrt{1 + 2x}}{\sqrt{1 + 2x + 2h} + \sqrt{1 + 2x}}
&& \text{Multiply both numerator and denominator by $\sqrt{1 + 2x + 2h} + \sqrt{1 + 2x}$}
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{\cancel{1} + \cancel{2x} + 2h - \cancel{1} - \cancel{2x}}{(h)(\sqrt{1 + 2x + 2h} + \sqrt{1 + 2x})}
&& \text{Combine like terms}
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{2\cancel{h}}{\cancel{(h)}(\sqrt{1 + 2x + 2h} + \sqrt{1 + 2x})}
&& \text{Cancel out like terms}
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{2}{(\sqrt{1 + 2x + 2h} + \sqrt{1 + 2x})} = \frac{2}{(\sqrt{1 + 2x + 2(0)} + \sqrt{1 + 2x})}
&& \text{Evaluate the limit}
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{\cancel{2}}{\cancel{2} \sqrt{1 + 2x}}
&& \text{Cancel out like terms}
\\
\\
\end{aligned}
\end{equation}
$


$\qquad \fbox{$f'(x) = \displaystyle \frac{1}{\sqrt{1 + 2x}}$}$

Both functions involves square root that are continuous for $1 + 2x \geq 0$.

$\displaystyle \begin{array}{cc}
1 + 2x & \geq 0 \\
x & \geq \frac{-1}{2}
\end{array} $

However, $\sqrt{1 + 2x}$ is placed in the denominator of $g'(x)$ that's why $\displaystyle \frac{-1}{2}$ is not included in its domain. Therefore,

The domain of $g(x) = \sqrt{1 + 2x}$ is $\displaystyle \left[ \frac{-1}{2}, \infty \right)$

The domain of $g'(x) = \displaystyle \frac{1}{\sqrt{1 + 2x}}$ is $\displaystyle \left( \frac{-1}{2}, \infty \right)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...