Monday, August 28, 2017

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 81

a.) Prove that if $f$, $g$, and $h$ are differentiable, then $(fgh)' = f'gh+fg'h+fgh'$ by using product rule

$
\begin{equation}
\begin{aligned}
(fgh)' & = [f(gh)]'
&& \text{Group the three functions and assume that we only have two factors}\\
\\
(fgh)' & = f(gh)' + f'(gh)
&& \text{Apply Product rule}\\
\\
(fgh)' & = f(gh'+g'h)+f'gh
&& \text{Apply product rule again in } (gh)'
\end{aligned}
\end{equation}
$


Therefore, $(fgh)' = fgh'+fg'h+f'gh$

b.) Prove that $\displaystyle \frac{d}{dx}[f(x)]^3 = 3[f(x)]^2f'(x)$ by taking $f =g = h$ in part(a)
Let $f^3 = (fgh)$, so we have
$(f^3)' = (fff)'$

Applying Product rule twice we get


$
\begin{equation}
\begin{aligned}
(f^3)' & = f'ff+f(ff)'\\
\\
(f^3)' & = f'ff+f(f'f+f'f)\\
\\
(f^3)' & =f^2f'+f^2f'+f^2f'\\
\\
(f^3)' & = 3f^2f'
\end{aligned}
\end{equation}
$


In other words, $\displaystyle \frac{d}{dx} [f(x)]^3 = 3 [f(x)]^2 f'(x)$

c.) Differentiate $y = (x^4+3x^3+17x+82)^3$ using part(b)
Let $f(x) = x^4 + 3x^3 + 17x + 82$

Using $\displaystyle \frac{d}{dx}[f(x)]^3 = 3[f(x)]^2f'(x)$


$
\begin{equation}
\begin{aligned}
\frac{d}{dx} [f(x)]^3 & = 3(x^4+3x^3+17x+82)^2 \left[ \frac{d}{dx}(x^4)+3\frac{d}{dx}(x^3)+17\frac{d}{dx}(x)+\frac{d}{dx}(82)\right]\\
\\
\frac{d}{dx} [f(x)]^3 & = 3(x^4+3x^3+17x+82)^2 [4x^3+(3)(3x^2)+(17)(1)+0]\\
\\
\frac{d}{dx} [f(x)]^3 & = 3(x^4+3x^3+17x+82)^2 (4x^3+9x^2+17)
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...