Monday, August 14, 2017

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 44

Determine the limit $\lim\limits_{x \rightarrow 0^+} \displaystyle \left(\frac{1}{x} - \frac{1}{|x|}\right)$, if it exists. If the limit does not exist, explain why.


$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 0^+} \displaystyle \left(\frac{1}{x} - \frac{1}{|x|}\right) & = \lim\limits_{x \rightarrow 0^+} \left( \frac{1}{x} - \frac{1}{x}\right) && \text{(Applying the theory of limit for absolute values.)}\\
\lim\limits_{x \rightarrow 0^+} \displaystyle \left(\frac{1}{x} - \frac{1}{x}\right) & = \lim\limits_{x \rightarrow 0^+} 0 && \text{(Evaluating and simplifying)}
\end{aligned}
\end{equation}\\
\boxed{\lim\limits_{x \rightarrow 0^+} \displaystyle \left(\frac{1}{x} - \frac{1}{x}\right) = 0}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...