Saturday, August 26, 2017

College Algebra, Chapter 3, 3.6, Section 3.6, Problem 44

Determine the functions $f \circ g, \quad g \circ f, \quad f \circ f$ and $g \circ g$ and their domains if $\displaystyle f(x) = \frac{2}{x}$ and $\displaystyle g(x) = \frac{x}{x+2}$
For $f \circ g$,

$
\begin{equation}
\begin{aligned}
(f \circ g)(x) &= f(g(x)) && \text{Definition of } f \circ g\\
\\
(f \circ g)(x) &= f \left( \frac{x}{x + 2} \right) && \text{Definition of } g\\
\\
(f \circ g)(x) &= \frac{2}{\frac{x}{x+2}} && \text{Simplify}\\
\\
(f \circ g)(x) &= \frac{2(x+2)}{x} && \text{Definition of } f
\end{aligned}
\end{equation}
$

The function can't have a denominator equal to zero.
So the domain of $f \circ g$ is $(-\infty, 0) \bigcup (0,\infty)$

For $g \circ f$

$
\begin{equation}
\begin{aligned}
(g \circ f)(x) &= g(f(x)) && \text{Definition of } g \circ f\\
\\
(g \circ f)(x) &= g \left( \frac{2}{x} \right) && \text{Definition of } f\\
\\
(g \circ f)(x) &= \frac{\frac{2}{x}}{\frac{2}{x}+2} && \text{Simplify}\\
\\
(g \circ f)(x) &= \frac{2x}{2x(1 + x)} && \text{Simplify}\\
\\
(g \circ f)(x) &= \frac{1}{1+x} && \text{Definition of } g
\end{aligned}
\end{equation}
$

The denominator is not defined when $x = y$. So the domain of $g \circ f$ is $(-\infty, -1) \bigcup (-1, \infty)$

For $f \circ f$,

$
\begin{equation}
\begin{aligned}
(f \circ f)(x) &= f (f (x) ) && \text{Definition of } f \circ f\\
\\
(f \circ f)(x) &= f \left( \frac{2}{x} \right) && \text{Definition of } f\\
\\
(f \circ f)(x) &= \frac{\frac{2}{2}}{x} && \text{Simplify}\\
\\
(f \circ f)(x) &= x && \text{Definition of } f
\end{aligned}
\end{equation}
$

The function is define for all values of $x$, so the domain of $f \circ f$ is $(-\infty, \infty)$

For $g \circ g$,

$
\begin{equation}
\begin{aligned}
(g \circ g)(x) &= g(g(x)) && \text{Definition of } g \circ g\\
\\
(g \circ g)(x) &= g \left( \frac{x}{x+2} \right) && \text{Definition of } g\\
\\
(g \circ g)(x) &= \frac{\frac{x}{x+2}}{\frac{x}{x+2}+2} && \text{Simplify}\\
\\
(g \circ g)(x) &= \frac{\frac{x}{\cancel{x+2}}}{\frac{x+2x+4}{\cancel{x+2}}} && \text{Simplify}\\
\\
(g \circ g)(x) &= \frac{x}{3x+4} && \text{Definition of } g
\end{aligned}
\end{equation}
$

The denominator is not define when $\displaystyle x = -\frac{4}{3}$. So the domain of $g \circ g$ is $\displaystyle \left( -\infty, \frac{-4}{3} \right) \bigcup \left( \frac{-4}{3}, \infty \right)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...