Wednesday, August 2, 2017

f(x)=2/(1-x^2) ,c=0 Find a power series for the function, centered at c and determine the interval of convergence.

A power series centered at c=0 is follows the formula:
sum_(n=0)^oo a_nx^n = a_0+a_1x+a_2x^2+a_3x^3+...
The given function f(x)= 2/(1-x^2) centered at c=0 resembles the power series:
(1+x)^k = sum_(n=0)^oo (k(k-1)(k-2)...(k-n+1))/(n!) x ^n
or
(1+x)^k = 1+kx +(k(k-1))/(2!)x^2+(k(k-1)(k-2))/(3!)x^3+(k(k-1)(k-2)(k-3))/(4!)x^4+...
Apply Law of exponents: 1/x^n = x^(-n) , we get: f(x)= 2(1-x^2) ^(-1)
Apply the aforementioned formula for power series on  (1-x^2) ^(-1) or (1+(-x^2)) ^(-1) , we may replace "x " with "-x^2 " and "k " with "-1 ". We let:
(1+(-x^2))^(-1) = sum_(n=0)^oo (-1(-1-1)(-1-2)...(-1-n+1))/(n!) (-x^2) ^n
=sum_(n=0)^oo (-1(-2)(-3)...(-1-n+1))/(n!)(-1)^nx ^(2n)
=1+(-1)(-1)^1x ^(2*1) +(-1(-2))/(2!)(-1)^2x ^(2*2)+(-1(-2)(-3))/(3!)(-1)^3x ^(2*3)+(-1(-2)(-3)(-4)/(4!)(-1)^4x ^(2*4)+...
=1+(-1)*(-1)x^2 +2/2*1*x ^4 +(-6)/6*(-1)*x^6+24/24*1*x^8+...
=1+1x^2 +2/2x ^4 +6/6x^6+24/24x^8+...
=1+x^2 +x ^4 +x^6+x^8+...
Applying (1+(-x^2))^(-1) =1+x^2 +x ^4 +x^6+x^8+... , we get:
2*(1+(-x^2))^(-1) =2*[ 1+x^2 +x ^4 +x^6+x^8+...]
                                =2+2x^2 +2x ^4 +2x^6+2x^8+...
                                = sum_(n=0)^oo 2x^(2n)
The power series of the function f(x)=2/(1-x^2) centered at c=0 is:
2/(1-x^2) =sum_(n=0)^oo 2x^(2n)
or
2/(1-x^2) =2+2x^2 +2x ^4 +2x^6+2x^8+...
To determine the interval of convergence, we may apply geometric series test wherein the series sum_(n=0)^oo a*r^n  is convergent if |r|lt1  or -1 ltrlt 1 . If |r|gt=1 then the geometric series diverges.
The series sum_(n=0)^oo 2x^(2n) is the same as sum_(n=0)^oo 2(x^2)^n .
By comparing sum_(n=0)^oo2(x^2)^n  with  sum_(n=0)^oo a*r^n , we determine: r =x^2 .
Apply the condition for convergence of geometric series: |r|lt1 .
|x^2|lt1
|x|^2lt1
For xgt=0 , we replace |x| with x .
x^2lt1
Applying (f(x))^2lta then  f(x)ltsqrt(a) and f(x) gt-sqrt(a) .
Let f(x) =x and a =1 then +- sqrt(a)=+- sqrt(1) = +-1 .
The interval will be  xlt1 and xgt-1 and combine as -1ltxlt1 .
For xlt0 , we replace |x| with -x.
(-x)^2lt1
x^2 lt1
The interval will also be -1ltxlt1 .
Combining the ranges from xlt0 and or xgt=0 , we get the interval for convergence as: -1ltxlt1 .
Check the convergence at endpoints that may satisfy |x^2|=1 .
Let x=-1 on sum_(n=0)^oo 2(x^2)^n , we get:
sum_(n=0)^oo2((-1)^2)^n=sum_(n=0)^oo 2(1)^n
Using geometric series test,  the r =1 satisfy |r| gt=1 . Thus, the series diverges at x=-1 .
Let x=1 on sum_(n=0)^oo 2(x^2)^n , we get:
sum_(n=0)^oo2(1^2)^n=sum_(n=0)^oo 2(1)^n
Using geometric series test,  the r =1 satisfy |r| gt=1 . Thus, the series diverges at x=1 .
Thus, the power series sum_(n=0)^oo 2(x^2)^n or sum_(n=0)^oo2x^(2n) has an interval of convergence: -1 ltxlt1 .

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...