Tuesday, August 8, 2017

Calculus of a Single Variable, Chapter 8, 8.4, Section 8.4, Problem 33

int1/(4+4x^2+x^4)dx
Let's rewrite the integrand as :
=int1/((x^2)^2+2(2)(x^2)+2^2)dx
=int1/(x^2+2)^2dx
Apply integral substitution:x=sqrt(2)tan(u),u=arctan(x/sqrt(2))
dx=sqrt(2)sec^2(u)du
=int(sqrt(2)sec^2(u))/((sqrt(2)tan(u))^2+2)^2du
=int(sqrt(2)sec^2(u))/(2tan^2(u)+2)^2du
=int(sqrt(2)sec^2(u))/(2^2(tan^2(u)+1)^2)du
Take the constant out,
=sqrt(2)/2^2int(sec^2(u))/(tan^2(u)+1)^2du
Use the identity:1+tan^2(x)=sec^2(x)
=sqrt(2)/4int(sec^2(u))/(sec^2(u))^2du
=sqrt(2)/4int1/(sec^2(u))du
=sqrt(2)/4intcos^2(u)du
Use the trigonometric identity:cos^2(x)=(1+cos(2x))/2
=sqrt(2)/4int1/2(1+cos(2u))du
Take the constant out,
=sqrt(2)/8int(1+cos(2u))du
Apply the sum rule,
=sqrt(2)/8{int1du+intcos(2u)du}
Apply the common integral:intcos(x)dx=sin(x)
=sqrt(2)/8{u+1/2sin(2u)}
Substitute back u=arctan(x/sqrt(2))
=sqrt(2)/8{arctan(x/sqrt(2))+1/2sin(2arctan(x/sqrt(2)))}
=sqrt(2)/8{arctan(x/sqrt(2))+1/2(2sin(arctan(x/sqrt(2)))cos(arctan(x/sqrt(2))))}
=sqrt(2)/8{arctan(x/sqrt(2))+sin(arctan(x/sqrt(2)))cos(arctan(x/sqrt(2)))}
Use the identities:sin(arctan(x))=x/sqrt(1+x^2),cos(arctan(x))=1/sqrt(1+x^2)
=sqrt(2)/8{arctan(x/sqrt(2))+x/sqrt(x^2+2)sqrt(2)/(sqrt(x^2+2))}
=sqrt(2)/8{arctan(x/sqrt(2))+(sqrt(2)x)/(x^2+2)}
=1/8{sqrt(2)arctan(x/sqrt(2))+2x/(x^2+2)}
Add a constant C to the solution,
=1/8(sqrt(2)arctan(x/sqrt(2))+(2x)/(x^2+2))+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...