Wednesday, May 31, 2017

int (4x^3 + 3)/(x^4 + 3x) dx Find the indefinite integral.

int (4x^3+3)/(x^4+3x)dx
To solve, apply u-substitution method. So let:
u= x^4+3x
Then, differentiate it.
du=(4x^3+3)dx
Plug-in them to the integral. 
int (4x^3+3)/(x^4+3x)dx
= int 1/(x^4+3x)* (4x^3+3)dx
=int1/udu
Then, apply the integral formula  int 1/xdx = ln|x| + C .
= ln|u| + C
And, substitute back  u=x^4+3x .
=ln |x^4+3x|+C
 
Therefore,  int (4x^3+3)/(x^4+3x)dx = ln|x^4+3x|+C .

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...