Monday, May 22, 2017

Calculus: Early Transcendentals, Chapter 7, 7.4, Section 7.4, Problem 25

int(4x)/(x^3+x^2+x+1)dx
To solve, apply the partial fraction decomposition.
To do so, factor the denominator.
int(4x)/(x^3+x^2+x+1)dx = int(4x)/((x+1)(x^2+1))dx
Then, express the integrand as sum of proper rational expressions.
(4x)/((x+1)(x^2+1))=A/(x+1)+(Bx+C)/(x^2+1)
Multiply both sides by the LCD.
4x =A(x^2+1)+(Bx+C)(x+1)
4x = Ax^2+A + Bx^2+Bx+Cx+C
4x=(A+B)x^2+(B+C)x + A+C
Express the left side as a polynomial with degree 2.
0x^2+4x+0=(A+B)x^2+Cx+A+C
For the two sides to be equal, the two polynomials should be the same. So set the coefficients of the two polynomials equal to each other.
x^2:
0=A+B (Let this be EQ1.)
x:
4=B+C (Let this be EQ2.)
Constant:
0=A+C (Let this be EQ3.)
To solve for the values of A, B and C, isolate the A in EQ1 and the C in EQ2.
EQ1:
0=A+B
-B=A
EQ2:
4 = B + C
4 - B = C
Plug-in them to EQ3.
EQ3:
0=A+C
0=-B+4-B
0=-2B+4
-4=-2B
2=B
And, plug-in the value of B to EQ1 and EQ2.
EQ1:
0 =A + B
0=A+2
-2=A
EQ2:
4=B+C
4=2+C
2=C
So the partial fraction decomposition of the integrand is:
(4x)/(x^3+x^2+x+1) = -2/(x+1) + (2x+2)/(x^2+1)=-2/(x+1)+(2x)/(x^2+1)+2/(x^2+1)
Then, take the integral of it.
int (4x)/(x^3+x^2+x+1)dx
=int (-2/(x+1)+ (2x)/(x^2+1) + 2/(x^2+1))dx
=int -2/(x+1)dx + int(2x)/(x^2+1)dx + int2/(x^2+1)dx
=-2ln|x+1| + ln|x^2+1|+2tan^(-1)(x) +C

Therefore, int (4x)/(x^3+x^2+x+1)dx=-2ln|x+1| + ln|x^2+1|+2tan^(-1)(x) +C .

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...