Saturday, May 13, 2017

College Algebra, Chapter 1, 1.1, Section 1.1, Problem 94

Solve the equation $\displaystyle A = P \left( 1 + \frac{i}{100} \right)^2 $ for $i$

$
\begin{equation}
\begin{aligned}
A &= P \left( 1 + \frac{i}{100} \right)^2 && \text{Divide both sides by } P\\
\\
\frac{A}{P} &= \frac{\cancel{P}\left( 1 + \frac{i}{100} \right)^2}{\cancel{P}} && \text{Cancel out like terms}\\
\\
\frac{A}{P} &= \left( 1 + \frac{i}{100} \right)^2 && \text{Take the square root of both sides}\\
\\
\pm \sqrt{\frac{A}{P}} &= \sqrt{\left( 1 + \frac{i}{100} \right)^2} && \text{Simplify}\\
\\
\pm \sqrt{\frac{A}{P}} &= 1 + \frac{i}{100} && \text{Subtract both sides by 1}\\
\\
\pm \sqrt{\frac{A}{P}} -1 &= 1 + \frac{i}{100} -1 && \text{Simplify}\\
\\
\pm \sqrt{\frac{A}{P}} -1 &= \frac{i}{100} && \text{Multiply both sides by 100}\\
\\
100 & \left[ \pm \sqrt{\frac{A}{P}} - 1 = \frac{i}{\cancel{100}} \right] \cancel{100} && \text{Cancel out like terms}\\
\\
100 \left( \pm \sqrt{\frac{A}{P}} - 1 \right) &= i \\
\\
& \text{or}\\
\\
i &= 100 \left( \pm \sqrt{\frac{A}{P}} -1 \right)
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...