Sunday, May 28, 2017

College Algebra, Chapter 3, 3.6, Section 3.6, Problem 8

Evaluate $f + g$, $f - g$, $fg$ and $\displaystyle \frac{f}{g}$ of the function $f(x) = \sqrt{9-x^2}$ and $g(x) = \sqrt{x^2-4}$ and find their domain

For $f+g$,

$
\begin{equation}
\begin{aligned}
f+g &= f(x) + g(x)\\
\\
f+g &= \sqrt{9-x^2} + \sqrt{x^2 - 4}
\end{aligned}
\end{equation}
$

The radicand can't be a negative value. So we factor $9- x^2 = (3-x)(3+x)$ and $x^2 - 4 = (x- 2)(x+2)$. Thus the domain of $f(x) + g(x)$ is $[-3,-2]\bigcup[2,3]$

For $f-g$

$
\begin{equation}
\begin{aligned}
f-g &= f(x) - g(x) \\
\\
f-g &= \sqrt{9-x^2} - \sqrt{x^2 - 4}
\end{aligned}
\end{equation}
$

The radicand can't be a negative value. So we factor $9- x^2 = (3-x)(3+x)$ and $x^2 - 4 = (x- 2)(x+2)$. Thus the domain of $f(x) - g(x)$ is $[-3,-2]\bigcup[2,3]$


For $fg$

$
\begin{equation}
\begin{aligned}
fg &= f(x) \cdot g(x) \\
\\
fg &= \left( \sqrt{9-x^2} \right) \left( \sqrt{x^2 - 4} \right) && \text{Substitute } f(x) = \sqrt{9-x^2} \text{ and } g(x) = \sqrt{x^2 - 4}\\
\\
fg &= \sqrt{(9-x^2)(x^2-4)} && \text{Apply FOIL method}\\
\\
fg &= \sqrt{9x^2 - 36 - x^4 + 4x^2} && \text{Combine like terms}\\
\\
fg &= \sqrt{13x^2 - x^4 - 36}
\end{aligned}
\end{equation}
$

The radicand can't be a negative value. So we factor $9- x^2 = (3-x)(3+x)$ and $x^2 - 4 = (x- 2)(x+2)$. Thus the domain of $f(x) \cdot g(x)$ is $[-3,-2]\bigcup[2,3]$


For $\displaystyle \frac{f}{g}$

$
\begin{equation}
\begin{aligned}
\frac{f}{g} &= \frac{f(x)}{g(x)}\\
\\
\frac{f}{g} &= \frac{\sqrt{9-x^2}}{\sqrt{x^2-4}} && \text{Substitute } f(x) = \sqrt{9-x} \text{ and } g(x) = \sqrt{x^2 - 4}\\
\\
\frac{f}{g} &= \sqrt{\frac{9-x^2}{x^2-4}}
\end{aligned}
\end{equation}
$

The function $\displaystyle \frac{f}{g}$ can't have a denominator equal to zero and the radicand can't be a negative value. So we factor $9-x^2 = (3-x)(3+x)$ and $x^2 - 4 = (x-2)(x+2)$. Thus, the domain of $\displaystyle \frac{f}{g}$ is $[-3,-2) \bigcup (2,3]$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...