Friday, May 12, 2017

College Algebra, Chapter 3, 3.6, Section 3.6, Problem 36

Determine the functions $f \circ g, \quad g \circ f, \quad f \circ f$ and $g \circ g$ and their domains if $f(x) = x^3 + 2$ and $g(x) = \sqrt[3]{x}$
For $f \circ g$

$
\begin{equation}
\begin{aligned}
f \circ g &= f(g(x)) && \text{Definition of } f \circ g\\
\\
f \circ g &= \left( \sqrt[3]{x} \right)^3 + 2 && \text{Definition of } g\\
\\
f \circ g &= x + 2 && \text{Definition of } f
\end{aligned}
\end{equation}
$

The domain of the function is $(-\infty, \infty)$

For $g \circ f$

$
\begin{equation}
\begin{aligned}
g \circ f &= g(f(x)) && \text{Definition of } g \circ f\\
\\
g \circ f &= \sqrt[3]{(x^3+2)} && \text{Definition of } g\\
\end{aligned}
\end{equation}
$

We know that if the index is an odd number then the domain of function is $(-\infty,\infty)$

For $f \circ f$

$
\begin{equation}
\begin{aligned}
f \circ f &= f(f(x)) && \text{Definition of } f \circ f\\
\\
f \circ f &= (x^3 + 2)^3 + 2&& \text{Definition of } f\\
\\
f \circ f &= x^9 + 6x^6 + 12x^3 + 8 + 2 && \text{Simplify}\\
\\
f \circ f &= x^9 + 6x^6 + 12x^3 + 10 && \text{Definition of } f
\end{aligned}
\end{equation}
$

The domain of the function is $(-\infty,\infty)$

For $g \circ g$

$
\begin{equation}
\begin{aligned}
g \circ g &= g(g(x)) && \text{Definition of } g \circ g\\
\\
g \circ g &= \sqrt[3]{\sqrt[3]{x}} && \text{Definition of } g\\
\\
g \circ g &= \sqrt[6]{x} && \text{Definition of } g
\end{aligned}
\end{equation}
$

We know that if the index is any even number, the radicand can't have a negative value. So the domain of function is $[0,\infty)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...