This function is infinitely differentiable on entire RR. The necessary condition of extremum for such a function is f'(x) = 0.
To find the derivative of this function we need the product rule and the derivatives of sine, cosine, hyperbolic sine and hyperbolic cosine. We know them:)
So f'(x) = cosx sinhx + sinx coshx + sinx coshx - cosx sinhx = 2 sinx coshx.
The function coshx is always positive, hence f'(x) = 0 at those points where sinx = 0. They are k pi for integer k, and three of them are in the given interval: -pi, 0 and pi.
Moreover, f'(x) has the same sign as sinx, so it is positive from -4 to -pi, negative from -pi to 0, positive from 0 to pi and negative again from pi to 4. Function f(x) increases and decreases accordingly, therefore it has local minima at x=-4, x=0 and x=4, and local maxima at x=-pi and x=pi.
Wednesday, May 24, 2017
Calculus of a Single Variable, Chapter 5, 5.8, Section 5.8, Problem 37
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
The play Duchess of Malfi is named after the character and real life historical tragic figure of Duchess of Malfi who was the regent of the ...
-
The only example of simile in "The Lottery"—and a particularly weak one at that—is when Mrs. Hutchinson taps Mrs. Delacroix on the...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
No comments:
Post a Comment