Friday, October 7, 2016

f(x) = sinx , n=5 Find the n'th Maclaurin polynomial for the function.

Maclaurin series is a special case of Taylor series that is centered at a=0. The expansion of the function about 0 follows the formula:
f(x)=sum_(n=0)^oo (f^n(0))/(n!) x^n
 or
f(x)= f(0)+(f'(0))/(1!)x+(f^2(0))/(2!)x^2+(f^3(0))/(3!)x^3+(f^4(0))/(4!)x^4 +...
To determine the Maclaurin polynomial of degree n=5 for the given function f(x)=sin(x) , we may apply the formula for Maclaurin series.
To list f^n(x) , we may apply the derivative formula for trigonometric functions: d/(dx) sin(x) = cos(x)  and d/(dx) cos(x) = -sin(x) .
f(x) =sin(x)
f'(x) = d/(dx) sin(x)
           = cos(x)
f^2(x) = d/(dx) cos(x)
           = -sin(x)
f^3(x) = d/(dx) -sin(x)
           =-1*d/(dx) sin(x)
           = -1 * cos(x)
           = -cos(x)
f^4(x) = d/(dx) -cos(x)
            =-1*d/(dx) cos(x)
            = -1 * (-sin(x))
            = sin(x)
f^5(x) = d/(dx) sin(x)
          = cos(x)
Plug-in x=0 on each f^n(x) , we get:
f(0) =sin(0) =0
f'(0)= cos(0) =1
f^2(0)= -sin(0)=0
f^3(0)= -cos(0)=-1
f^4(0)= sin(0)=0
f^5(0)= cos(0)=1
Plug-in the values on the formula for Maclaurin series, we get:
sum_(n=0)^5 (f^n(0))/(n!) x^n= 0+1/(1!)x+0/(2!)x^2+(-1)/(3!)x^3+0/(4!)x^4+1/(5!)x^5
                       = 0+1/1x+0/2x^2-1/6x^3+0/24x^4+1/120x^5
                      = x-1/6x^3+1/120x^5
The Maclaurin polynomial of degree n=5 for the given function f(x)=sin(x) will be:
P_5(x)=x-1/6x^3+1/120x^5

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...