Tuesday, October 18, 2016

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 26

a.) Determine the equation of the tangent line to the curve $y = \sec x - 2 \cos x$ at the point $\displaystyle \left( \frac{\pi}{3}, 1 \right)$

Solving for the derivative of $y = \sec x - 2 \cos x$


$
\begin{equation}
\begin{aligned}

\qquad y' =& \frac{d}{dx} (\sec x) -2 \frac{d}{dx} (\cos x)
&&
\\
\\
\qquad y' =& \sec x \tan x + 2 \sin x
&&
\\
\\

\end{aligned}
\end{equation}
$




Let $y' = m_T$ (slope of the tangent line)


$
\begin{equation}
\begin{aligned}


y' = m_T =& \sec \left( \frac{\pi}{3} \right) \tan \left( \frac{\pi}{3} \right) + 2 \sin \left( \frac{\pi}{3} \right)
&&
\\
\\
m_T =& \sqrt[3]{3}
&&

\end{aligned}
\end{equation}
$


Using Point Slope Form substitute the values of $x, y$ and $m_T$


$
\begin{equation}
\begin{aligned}

y - y_1 =& m (x - x_1)
&&
\\
\\
y - 1 =& \sqrt[3]{3} \left( x = \frac{\pi}{3} \right)
&&
\\
\\
y - 1 =& \sqrt[3]{3} x - \sqrt{3} \pi
&&
\\
\\
y =& \sqrt[3]{3} x - \sqrt{3} \pi + 1
&& \text{Equation of the tangent line at $\large \left( \frac{\pi}{3}, 1 \right)$}

\end{aligned}
\end{equation}
$



b.) Graph the curve and the tangent line in part (a) on the same screen

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...