Monday, October 24, 2016

College Algebra, Chapter 9, 9.2, Section 9.2, Problem 56

Determine the product of the numbers $10^{\frac{1}{10}}, 10^{\frac{2}{10}}, 10^{\frac{3}{10}}, 10^{\frac{4}{10}},....., 10^{\frac{19}{10}}$

By Laws of Exponent, we have

$10^{\frac{1}{10} + \frac{2}{10} + \frac{3}{10}, \frac{4}{10} + ..... + \frac{19}{10}}$

To solve for the sum, we use both formulas of partial sums of the arithmetic sequence; solve for $n$, where $\displaystyle d = \frac{2}{10} -\frac{1}{10} = \frac{1}{10}$


$
\begin{equation}
\begin{aligned}

\frac{n}{2} \left[ 2a + (n - 1) d \right] =& n \left( \frac{a + a_n}{2} \right)
&&
\\
\\
2a + (n - 1)d =& a + a_n
&& \text{Multiply both sides by } \frac{2}{n}
\\
\\
(n - 1)d =& a_n - a
&& \text{Combine like terms}
\\
\\
n - 1 =& \frac{a_n - a}{d}
&& \text{Divide by } d
\\
\\
n =& \frac{a_n - a}{d} + 1
&& \text{Add } 1
\\
\\
n =& \frac{\displaystyle \frac{19}{10} - \frac{1}{10}}{ \displaystyle \frac{1}{10}} + 1
&&
\\
\\
n =& \frac{\displaystyle \frac{18}{\cancel{10}}}{\displaystyle \frac{1}{\cancel{10}}} + 1
&&
\\
\\
n =& 19
&&

\end{aligned}
\end{equation}
$


Now we solve the partial sum,


$
\begin{equation}
\begin{aligned}

S_{19} =& 19 \left( \frac{\displaystyle \frac{1}{10} + \frac{19}{10}}{2} \right)
\\
\\
S_{19} =& 19(1)
\\
\\
S_{19} =& 19


\end{aligned}
\end{equation}
$


So the product is

$10^{\frac{1}{10} + \frac{2}{10} + \frac{3}{10} + \frac{4}{10} + ..... + \frac{19}{10}} = 10^{19}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...