Thursday, October 20, 2016

Single Variable Calculus, Chapter 2, Review Exercises, Section Review Exercises, Problem 24

Suppose that

$\qquad f(x) = \left\{
\begin{array}{ccc}
2x - x^2 & \text{ if } & 0 \leq x \leq 2 \\
2 - x & \text{ if } & 2 < x \leq 3 \\
x - 4 & \text{ if } & 3 < x < 4 \\
\pi & \text{ if } & x \geq 4
\end{array}
\right.
$

a.) Determine whether $f$ is continuous from the left, continuous from the right, or continuous at each of the numbers 2, 3 and 4.

$\qquad$ We evaluate the left and right hand limits for the numbers 2, 3, and 4 to see whether $f$ is continuoous on that point.

$\qquad$ at $x = 2$,

$\qquad \qquad$ left hand limit: $\lim \limits_{x \to 2^-} f(x) = \lim \limits_{x \to 2^-} 2x - x^2 = 2(2) - 2(2)^2 = 4-4 = 0$

$\qquad \qquad$ right hand limit: $\lim \limits_{x \to 2^+} f(x) = \lim \limits_{x \to 2^+} 2 - x = 2 - 2 = 0$

$\qquad \qquad$ Therefore, $f$ is continuous at number 2.

$\qquad$ at $x = 3,$

$\qquad \qquad$ left hand limit: $\lim \limits_{x \to 3^-} f(x) = \lim \limits_{x \to 3^-} 2 -x = 2 - (3) = -1$

$\qquad \qquad$ right hand limit: $\lim \limits_{x \to 3^+} f(x) = \lim \limits_{x \to 3^+} x - 4 = 3 - 4 = -1$

$\qquad \qquad$ Therefore, $f$ is continuous at number 3.

$\qquad$ at $x = 4$,

$\qquad \qquad$ left hand limit: $\lim \limits_{x \to 4^-} f(x) = \lim \limits_{x \to 4^-} x- 4 = 4 - 4 =0$

$\qquad \qquad$ right hand limit: $\lim \limits_{x \to 4^+} f(x) = \lim \limits_{x \to 4^+} \pi = \pi$

$\qquad \qquad$ The left and right hand limit of the function at number 4 are different. Therefore, $f$ is discontinuous at 4 but it is continuous from the left.

b.) Graph the function $f$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...