g(x)=200+8x^3+x^4
differentiating,
g'(x)=24x^2+4x^3
g'(x)=4x^2(x+6)
Now let us find our critical numbers by setting g'(x)=0
4x^2(x+6)=0
solving above , x=0 and x=-6
Now let us check sign of g'(x) at test values in the intervals (-oo ,-6) , (-6,0) and (0,oo )
f'(-7)=4(-7)^2(-7+6)=-196
f'(-1)=4(-1)^2(-1+6)=20
f'(1)=4(1)^2(1+6)=28
Since f'(-7) is negative , function is decreasing in the interval (-oo ,-6)
f'(-1) is positive so function is increasing in the interval (-6,0)
f'(1) is positive so function is increasing in the interval (0,oo )
Since f'(-7) is negative and f'(-1) is positive , therefore Local minimum is at x=-6 . Local minima can be found by plugging in x=-6 in the function.
f(-6)=200+8(-6)^3+x^4=-232
Local minimum=-232 at x=-6
Now to find the intervals of concavity and inflection points,
g''(x)=4(x^2+(x+6)(2x))
g''(x)=4(x^2+2x^2+12x)
g''(x)=4(3x^2+12x)
g''(x)=12x(x+4)
set g''(x)=0
x=0 , x=-4
Now let us check the concavity in the intervals (-oo ,-4) , (-4,0) and (0,oo ) by plugging test values in g''(x).
g''(-5)=12(-5)(-5+4)=60
g''(-2)=12(-2)(-2+4)=-48
g''(1)=12(1)(1+4)=60
Since g''(-5) is positive , function is concave up in the interval (-oo ,-4)
g''(-2) is negative , so the function is concave down in the interval (-4,0)
g''(1) is positive , so the function is concave up in the interval (0,oo )
Since the concavity is changing so x=0 and x=-4 are the inflection points.
Thursday, October 27, 2016
Calculus: Early Transcendentals, Chapter 4, 4.3, Section 4.3, Problem 36
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
The play Duchess of Malfi is named after the character and real life historical tragic figure of Duchess of Malfi who was the regent of the ...
-
The only example of simile in "The Lottery"—and a particularly weak one at that—is when Mrs. Hutchinson taps Mrs. Delacroix on the...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
No comments:
Post a Comment