Thursday, October 20, 2016

Single Variable Calculus, Chapter 7, 7.6, Section 7.6, Problem 48

Suppose that a pointing in and out gallery has heigh $h$ and is hung so that its lower edge is a distance $d$ above the eye of an observer. How far from the wall should the observer stand to get the best view? In other words, where should the observer stand so as t maximize the angle $\theta$ subtended at her eyes by the pointing?




From the figure, we know that...

$
\begin{equation}
\begin{aligned}
\alpha &= \beta + \beta\\
\\
\theta &= \alpha - \beta \qquad \Longleftarrow \text{(Equation 1)}
\end{aligned}
\end{equation}
$


By using tangent function,
$\displaystyle \tan \alpha = \frac{h+d}{x}$ and $\displaystyle \tan \beta = \frac{d}{x}$
Thus,
$\displaystyle \alpha = \tan^{-1} \left[ \frac{h+d}{x} \right] \text{ and } \beta = \tan^{-1} \left[ \frac{d}{x} \right]$

From Equation 1,

$
\begin{equation}
\begin{aligned}
\theta &= \alpha - \beta\\
\\
\theta &= \tan^{-1} \left[ \frac{h+d}{x} \right] - \tan^{-1} \left[ \frac{d}{x} \right]
\end{aligned}
\end{equation}
$


If we need to maximize the angle, we set $\displaystyle \frac{d \theta}{dx} = 0$

$
\begin{equation}
\begin{aligned}
\frac{d \theta}{dx} = 0 &= \frac{\frac{d}{dx}\left( \frac{h+d}{x} \right)}{1 + \left( \frac{h+d}{x} \right)^2} - \frac{\frac{d}{dx}\left( \frac{d}{x}\right)}{1 + \left( \frac{d}{x} \right)^2}\\
\\
0 &= \frac{-\frac{(h+d)}{x^2}}{1 + \frac{(h+d)^2}{x^2}} - \frac{\left( - \frac{d}{x^2} \right)}{1 + \left( \frac{d^2}{x^2} \right)}\\
\\
0 &= \frac{-\frac{(h+d)}{x^2}}{\frac{x^2+(+d)^2}{x^2}} - \frac{\frac{\left(- \frac{d}{x} \right)}{x^2 + d^2}}{x^2}\\
\\
0 &= \frac{-(h+d)}{x^2 + (h + d)^2} + \frac{d}{x^2 + d^2}\\
\\
\frac{h+d}{x^2 + (h + d)^2} &= \frac{d}{x^2 + d^2}\\
\\
(h+d)\left( x^2 + d^2 \right) &= d \left[ x^2 + (h + d)^2 \right]\\
\\
hx^2 + hd^2 + dx^2 + d^3 &= d\left[ x^2 + h^2 + 2hd + d^2 \right]\\
\\
hx^2 + hd^2 + dx^2 + d^3 &= dx^2 + dh^2 + 2hd^2 + d^3\\
\\
hx^2 &= dh^2 + dh^2 \\
\\
hx^2 &= h \left( dh + d^2 \right)\\
\\
x^2 &= dh + d^2\\
\\
x &= \sqrt{dh + d^2}
\end{aligned}
\end{equation}
$


It shows that the observer will get the best view when his distance from the base of the pointing is $x = \sqrt{dh + d^2}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...