Wednesday, October 26, 2016

College Algebra, Chapter 2, Review Exercises, Section Review Exercises, Problem 10

Find an equation of the circle that contains the points $P(2,3)$ and $Q(-1,8)$ and has the midpoint of the segment $PQ$ as its center
Recall that the general equation for the circle with center $(h,k)$ and radius $r$ is...
$(x - h)^2 + (y - k)^2 = r^2$

To get the center, we use midpoint formula...

$
\begin{equation}
\begin{aligned}
m_{PQ}, \quad x &= \frac{2-1}{2} = \frac{1}{2}\\
\\
y &= \frac{3+8}{2} = \frac{11}{2}
\end{aligned}
\end{equation}
$

Therefore, $\displaystyle \left( \frac{1}{2}, \frac{11}{2} \right)$
Thus, $\displaystyle \left( x - \frac{1}{2} \right)^2 + \left( y - \frac{11}{2} \right)^2 = r^2$
Since the circle pass through $P(2,3)$

$
\begin{equation}
\begin{aligned}
\left( 2 - \frac{1}{2} \right)^2 + \left( 3 - \frac{11}{2} \right)^2 &= r^2\\
\\
\left( \frac{3}{2} \right)^2 + \left( \frac{-5}{2} \right)^2 &= r^2\\
\\
r^2 &= \frac{17}{2} = 8.5
\end{aligned}
\end{equation}
$

Thus, the equation of the circle is...
$\displaystyle \left( x - \frac{1}{2} \right)^2 + \left( y - \frac{11}{2} \right)^2 = \frac{17}{2}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...