Wednesday, October 26, 2016

Precalculus, Chapter 5, 5.5, Section 5.5, Problem 9

cos(2x)-cos(x)=0 , 0<=x<=2pi
using the identity cos(2x)=2cos^2(x)-1
cos(2x)-cos(x)=0
2cos^2(x)-1-cos(x)=0
Let cos(x)=y,
2y^2-y-1=0
solving using the quadratic formula,
y=(1+-sqrt((-1)^2-4*2(-1)))/(2*2)
y=(1+-sqrt(9))/4=(1+-3)/4=1,-1/2
:. cos(x)=1, cos(x)=-1/2
cos(x)=-1/2
General solutions are,
x=(2pi)/3+2pin, x=(4pi)/3+2pin
Solutions for the range 0<=x<=2pi are,
x=(2pi)/3 , x=(4pi)/3
cos(x)=1
General solutions are,
x=0+2pin
solutions for the range 0<=x<=2pi are,
x=0 , x=2pi
combine all the solutions ,
x=0, x=2pi , x=(2pi)/3 , x=(4pi)/3

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...