Sunday, April 3, 2016

College Algebra, Chapter 3, 3.1, Section 3.1, Problem 18

Evaluate the function $f(x) = x^3 + 2x$ at $f(-2), \quad f(1), \quad f(0), \quad f\left( \frac{1}{3} \right), \quad f(0.2)$
For $f(-2)$,

$
\begin{equation}
\begin{aligned}
f(-2) &= (-2)^3 + 2(-2) && \text{Replace } x \text{ by } -2\\
\\
&= -8-4 && \text{Simplify}\\
\\
&= -12
\end{aligned}
\end{equation}
$


For $f(1)$,

$
\begin{equation}
\begin{aligned}
f(1) &= (1)^3 + 2(1) && \text{Replace } x \text{ by } 1\\
\\
&= 1 + 2 && \text{Simplify}\\
\\
&= 3
\end{aligned}
\end{equation}
$

For $f(0)$,

$
\begin{equation}
\begin{aligned}
f(0) &= (0)^3 + 2(0) && \text{Replace } x \text{ by } 0\\
\\
&= 0
\end{aligned}
\end{equation}
$


For $f\left( \frac{1}{3} \right)$,

$
\begin{equation}
\begin{aligned}
f\left( \frac{1}{3} \right) &= \left( \frac{1}{3} \right)^3 + 2\left( \frac{1}{3} \right) && \text{Replace } x \text{ by } \frac{1}{3}\\
\\
&= \frac{1}{27} + \frac{2}{3} && \text{Get the LCD}
\\
&= \frac{1+11}{27} && \text{Simplify}\\
\\
&= \frac{12}{27} && \text{Reduce to lowest term}\\
\\
&= \frac{4}{9}
\end{aligned}
\end{equation}
$


For $f (0.2)$,

$
\begin{equation}
\begin{aligned}
f(0.2) &= (0.2)^3 + 2 (0.2) && \text{Replace } x \text{ by } 0.2\\
\\
&= 0.008 + 0.4 && \text{Simplify}\\
\\
&= 0.408
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...