The derivative of y in terms of x is denoted by (dy)/(dx) or y’ .
For the given problem: y = 1/2(1/2ln((x+1)/(x-1)) +arctan(x)) , we may apply the basic differentiation property: d/(dx) c*f(x) = c d/(dx) f(x) .
d/(dx)y =d/(dx) 1/2[1/2ln((x+1)/(x-1)) +arctan(x)]
y'=1/2d/(dx) [1/2ln((x+1)/(x-1)) +arctan(x)]
Apply the basic differentiation property: d/(dx) (u+v) = d/(dx) (u) + d/(dx) (v)
y'=1/2[d/(dx) (1/2ln((x+1)/(x-1))) +d/(dx)(arctan(x))]
For the derivative of d/(dx)(1/2ln((x+1)/(x-1))) , we may apply again the basic derivative property:d/(dx) c*f(x) = c d/(dx) f(x) .
d/(dx) (1/2ln((x+1)/(x-1)))=1/2d/(dx) (ln((x+1)/(x-1)))
For the derivative part, follow the basic derivative formula for natural logarithm function: d/(dx) ln(u)= (du)/u .
Let u =(x+1)/(x-1) then du = -2/(x-1)^2 .
Note For the derivative of u=(x+1)/(x-1) ,we apply the Quotient Rule: d/(dx)(f/g) = (f'*g-f*g')/g^2 .
Let:
f= (x+1) then f'=1
g=(x-1) then g'=1
Then,
d/(dx)((x+1)/(x-1))= (1*(x-1)-(x+1)*(1))/(x-1)^2
=((x-1)-(x+1))/(x-1)^2
=(x-1-x-1)/(x-1)^2
=(-2)/(x-1)^2
Applying: d/(dx) ln(u)= (du)/u on:
1/2d/(dx)(ln((x+1)/(x-1)))= (1/2) *(((-2)/(x-1)^2))/(((x+1)/(x-1)))
=(1/2) *((-2)/(x-1)^2)*(x-1)/(x+1)
=(-2(x-1))/(2(x-1)^2(x+1))
Cancel common factors 2 and (x-1) from top and bottom:
(-2(x-1))/(2(x-1)^2(x+1)) =-1/((x-1)(x+1))
Recall (x-1)*(x+1) = x^2-x+x-1 = x^2-1 then the derivative becomes:
1/2d/(dx)(ln((x+1)/(x-1)))=-1/(x^2-1)
For the derivative of d/(dx)(arctan(x)) , we apply basic derivative formula for inverse tangent:
d/(dx)(arctan(x))=1/(x^2+1)
Combining the results, we get:
y'=1/2[d/(dx) (1/2ln((x+1)/(x-1))) +d/(dx)(arctan(x))]
y'=(1/2) [-1/(x^2-1) +1/(x^2+1)]
y' =(1/2) [-1/(x^2-1) *(x^2+1)/(x^2+1) +1/(x^2+1)*(x^2-1)/(x^2-1)]
y' =(1/2) [(-(x^2+1) +(x^2-1))/((x^2-1) (x^2+1))]
y' =(1/2) [(-x^2-1+x^2-1)/((x^2-1) (x^2+1))]
y' =(1/2) [(-2)/((x^2-1) (x^2+1))]
y' =(-1)/((x^2-1) (x^2+1))
or
y'= (-1)/(x^4-1)
Tuesday, April 26, 2016
Calculus of a Single Variable, Chapter 5, 5.6, Section 5.6, Problem 51
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
Robinson Crusoe, written by Daniel Defoe, is a novel. A novel is a genre defined as a long imaginative work of literature written in prose. ...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
The title of the book refers to its main character, Mersault. Only a very naive reader could consider that the stranger or the foreigner (an...
-
The only example of simile in "The Lottery"—and a particularly weak one at that—is when Mrs. Hutchinson taps Mrs. Delacroix on the...
No comments:
Post a Comment