Tuesday, April 26, 2016

Calculus of a Single Variable, Chapter 5, 5.6, Section 5.6, Problem 51

The derivative of y in terms of x is denoted by (dy)/(dx) or y’ .
For the given problem: y = 1/2(1/2ln((x+1)/(x-1)) +arctan(x)) , we may apply the basic differentiation property: d/(dx) c*f(x) = c d/(dx) f(x) .
d/(dx)y =d/(dx) 1/2[1/2ln((x+1)/(x-1)) +arctan(x)]
y'=1/2d/(dx) [1/2ln((x+1)/(x-1)) +arctan(x)]
Apply the basic differentiation property: d/(dx) (u+v) = d/(dx) (u) + d/(dx) (v)
y'=1/2[d/(dx) (1/2ln((x+1)/(x-1))) +d/(dx)(arctan(x))]
For the derivative of d/(dx)(1/2ln((x+1)/(x-1))) , we may apply again the basic derivative property:d/(dx) c*f(x) = c d/(dx) f(x) .
d/(dx) (1/2ln((x+1)/(x-1)))=1/2d/(dx) (ln((x+1)/(x-1)))
For the derivative part, follow the basic derivative formula for natural logarithm function: d/(dx) ln(u)= (du)/u .
Let u =(x+1)/(x-1) then du = -2/(x-1)^2 .
Note For the derivative of u=(x+1)/(x-1) ,we apply the Quotient Rule: d/(dx)(f/g) = (f'*g-f*g')/g^2 .
Let:
f= (x+1) then f'=1
g=(x-1) then g'=1
Then,
d/(dx)((x+1)/(x-1))= (1*(x-1)-(x+1)*(1))/(x-1)^2
=((x-1)-(x+1))/(x-1)^2
=(x-1-x-1)/(x-1)^2
=(-2)/(x-1)^2
Applying: d/(dx) ln(u)= (du)/u on:
1/2d/(dx)(ln((x+1)/(x-1)))= (1/2) *(((-2)/(x-1)^2))/(((x+1)/(x-1)))
=(1/2) *((-2)/(x-1)^2)*(x-1)/(x+1)
=(-2(x-1))/(2(x-1)^2(x+1))
Cancel common factors 2 and (x-1) from top and bottom:
(-2(x-1))/(2(x-1)^2(x+1)) =-1/((x-1)(x+1))
Recall (x-1)*(x+1) = x^2-x+x-1 = x^2-1 then the derivative becomes:
1/2d/(dx)(ln((x+1)/(x-1)))=-1/(x^2-1)

For the derivative of d/(dx)(arctan(x)) , we apply basic derivative formula for inverse tangent:
d/(dx)(arctan(x))=1/(x^2+1)

Combining the results, we get:
y'=1/2[d/(dx) (1/2ln((x+1)/(x-1))) +d/(dx)(arctan(x))]
y'=(1/2) [-1/(x^2-1) +1/(x^2+1)]
y' =(1/2) [-1/(x^2-1) *(x^2+1)/(x^2+1) +1/(x^2+1)*(x^2-1)/(x^2-1)]
y' =(1/2) [(-(x^2+1) +(x^2-1))/((x^2-1) (x^2+1))]
y' =(1/2) [(-x^2-1+x^2-1)/((x^2-1) (x^2+1))]
y' =(1/2) [(-2)/((x^2-1) (x^2+1))]
y' =(-1)/((x^2-1) (x^2+1))
or
y'= (-1)/(x^4-1)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...