Saturday, April 16, 2016

College Algebra, Chapter 1, 1.1, Section 1.1, Problem 30

The equation $\displaystyle \frac{2x-1}{x+2} = \frac{4}{5}$ is either linear or equivalent to a linear equation. Solve the equation

$
\begin{equation}
\begin{aligned}
\frac{2x-1}{x+2} &= \frac{4}{5} && \text{Multiply both sides by } 5(x+2)\\
\\
5 \cancel{(x+2)} & \left[ \frac{2x-1}{\cancel{x+2}} = \frac{4}{\cancel{5}} \right] \cancel{5}(x+2) && \text{Simplify}\\
\\
5 (2x -1 ) &= 4(x+2) && \text{Apply Distributive property}\\
\\
10x - 5 &= 4x + 8 && \text{Combine like terms}\\
\\
10x - 4x &= 8 +5 && \text{Simplify}\\
\\
6x &= 13 && \text{Divide both sides by 6}\\
\\
\frac{\cancel{6}x}{\cancel{6}} &= \frac{13}{6} && \text{Simplify}\\
\\
x &= \frac{13}{6}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...