Monday, April 11, 2016

Calculus: Early Transcendentals, Chapter 7, 7.2, Section 7.2, Problem 6

int[(sin^3sqrtx)/(sqrtx)]dx=
Integrate using the u-substitution method. For this problem the u-substitution method will be used twice. The first time we substitute, let's use the variable y.
Let
y=sqrtx
(dy)/dx=1/(2sqrtx)
dx=2sqrtxdy

int[(sin^3(y))/y*2sqrtxdy=
2int[(sin^3(y))/(y)]*ydy=
2intsin^3(y)dy=
2intsin^2(y)sin(y)dy=
2int(1-cos^2(y))sin(y)dy=
The u-substitution method will be used a second time. We will use the variable u.
Let
u=cosy
(du)/dy=-sin(y)
dy=(-sin(y))/(du)

2int(1-u^2)sin(y)[(du)/(-sin(y))]=
-2int(1-u^2)du=
-2[u-1/3u^3]+C=
-2u+2/3u^3+C

Substitute in for u. u=cos(y)
-2cos(y)+2/3cos^3(y)+C

Substitute in for y. y=sqrtx
-2cos(sqrtx)+2/3cos^3(sqrtx)+C

The final answer is: -2cos(sqrtx)+2/3cos^3(sqrtx)+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...