Monday, April 4, 2016

Calculus: Early Transcendentals, Chapter 7, 7.2, Section 7.2, Problem 3

int_0^(pi/2)sin^7(theta)cos^5(theta)d theta
Let's first compute the indefinite integral by rewriting the integrand,
intsin^7(theta)cos^5(theta)d theta=intsin^6(theta)sin(theta)cos^5(theta)d theta
Now use the identity:sin^2(x)=1-cos^2(x)
=int(1-cos^2(theta))^3sin(theta)cos^5(theta)d theta
Now apply integral substitution,
Let u=cos(theta)
=>du=-sin(theta)d theta
=int(1-u^2)^3u^5(-du)
=-int(1-u^2)^3u^5du
=-int(1-u^6-3u^2+3u^4)u^5du
=-int(u^5-u^11-3u^7+3u^9)du
=-intu^5du+intu^11du+3intu^7du-3intu^9du
=-u^6/6+u^12/12+3(u^8/8)-3(u^10/10)
=u^12/12-3/10u^10+3/8u^8-1/6u^6
Substitute back u=cos(x)
=1/12cos^12(x)-3/10cos^10(x)+3/8cos^8(x)-1/6cos^6(x)
Add a constant C to the solution,
=1/12cos^12(x)-3/10cos^10(x)+3/8cos^8(x)-1/6cos^6(x)+C
Now let's evaluate the definite integral,
int_0^(pi/2)sin^7(theta)cos^5(theta)d theta=[1/12cos^12(x)-3/10cos^10(x)+3/8cos^8(x)-1/6cos^6(x)]_0^(pi/2)
=[1/12cos^12(pi/2)-3/10cos^10(pi/2)+3/8cos^8(pi/2)-1/6cos^6(x)]-[1/12cos^12(0)-3/10cos^10(0)+3/8cos^8(0)-1/6cos^6(0)]
Plug in the values of cos(pi/2)=0.cos(0)=1
=[0]-[1/12-3/10+3/8-1/6]
=-[(10-36+45-20)/120]
=-[-1/120]
=1/120

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...