Thursday, March 10, 2016

Single Variable Calculus, Chapter 4, 4.7, Section 4.7, Problem 68

Suppose that a rain gutter is to be constructed from a metal sheet of of width 30cm by bending up one-third of the sheet on each side through an angle $\theta$. How should $\theta$ be chosen so that gutter will carry the maximum amount of water?






The total Area of the gutter is

$
\begin{equation}
\begin{aligned}
A(\theta) &= \frac{1}{2} bh + 10h + \frac{1}{2} bh = 10h + bh\\
\\
A(\theta) &= 10(10 \sin \theta) + (10 \cos \theta) (10 \sin \theta)\\
\\
A(\theta) &= 100 \sin \theta + 100 \sin \theta \cos \theta
\end{aligned}
\end{equation}
$


Taking th derivative of $A$ by using Product Rule, we get...

$
\begin{equation}
\begin{aligned}
A'(\theta) &= 100 \cos \theta + 100 [ \sin \theta ( - \sin \theta ) + \cos \theta (\cos \theta)]\\
\\
A'(\theta) &= 100 \cos \theta + 100 \left[ - \sin ^2 \theta + \cos^2 \theta\right];
\end{aligned}
\end{equation}
$


Recall that $\sin^2 \theta + \cos^2 \theta = 1$

$
\begin{equation}
\begin{aligned}
A'(0) &= 100 \cos \theta + 100 [\cos ^2 \theta -1 + \cos^2 \theta]\\
\\
A'(0) &= 100 [ 2 \cos^2 \theta + \cos \theta - 1]
\end{aligned}
\end{equation}
$

When $A'(0) = \theta$,
$0 = 2 \cos^2 \theta + \cos \theta -1$

If we let $x = \cos \theta$,
$0 = 2x^2 + x -1$

By using Quadratic Formula,
$\displaystyle x = \frac{1}{2}$ and $x = -1$

So, we have
$\displaystyle \cos \theta = \frac{1}{2}$ and $\cos \theta = -1$

Thus,
$\displaystyle \theta = \frac{\pi}{3}$ and $\theta = \pi$
but $\theta < \pi$

Therefore, we can say that the gutter will carry out maximum water when $\displaystyle \theta = \frac{\pi}{3}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...