Thursday, March 24, 2016

Calculus of a Single Variable, Chapter 8, 8.4, Section 8.4, Problem 62

To find the arc length of a curve, we follow the formula:
S = int_a^b sqrt(1+((dy)/(dx))^2) if y=f(x) , alt=xlt=b or [a,b] .
For the given problem: y =x^2/2 on interval [0,4] , we have boundary values: a= 0 and b=4 .
Apply Power Rule for differentiation: d/(dx) x^n = n * x^(n-1) * dx .
(dy)/(dx) = d/(dx) (x^2/2)
= 1/2d/(dx) (x^2)
= 1/2 * [ 2 *x^(2-1) * 1 ]
=1/2 * [ 2x]
= (2x)/2
= x
Plug-n a=0 , b = 4 , and (dy)/(dx)= x on the formula S = int_a^b sqrt(1+((dy)/(dx))^2) , we get:
S = int_0^4 sqrt(1+x^2) dx
From indefinite integral table, the problem resembles the formula for integral with roots:
int sqrt(u^2+-a^2) dx=1/2usqrt(a^2+-u^2)+-1/2a^2ln|u+sqrt(u^2+-a^2)| .
Take note we have "+ " sign inside the radical part then we follow formula as:
int sqrt(u^2+a^2)dx=1/2*usqrt(a^2+u^2)+1/2*a^2ln|u+sqrt(u^2+a^2)| .
Applying the formula, we get
S = int_0^4 sqrt(1+(x)^2)
=[1/2*xsqrt(1^2+x^2)+1/2*1^2ln|x+sqrt(x^2+1^2)|]|_0^4
=[1/2*xsqrt(1+x^2)+1/2*ln|x+sqrt(x^2+1)|]|_0^4
=[(xsqrt(1+x^2))/2+(ln|x+sqrt(x^2+1)|)/2]|_0^4
Apply definite integration formula: F(x)|_a^b= F(b)-F(a) .
S =[(4sqrt(1+4^2))/2+(ln|4+sqrt(4^2+1)|)/2]-[(0sqrt(1+0^2))/2+(ln|0+sqrt(0^2+1)|)/2]
=[(4sqrt(1+16))/2+(ln|4+sqrt(16+1)|)/2]-[(0sqrt(1+0))/2+(ln|0+sqrt(0+1)|)/2]
=[(4sqrt(17))/2+(ln|4+sqrt(17)|)/2]-[0/2+(ln|0+sqrt(1)|)/2]
=[ 2sqrt(17)+(ln|4+sqrt(17)|)/2]-[0+(ln|1|)/2]
=[ 2sqrt(17)+(ln|4+sqrt(17)|)/2]-[0+0/2]
=[ 2sqrt(17)+(ln|4+sqrt(17)|)/2]-[0]
=2sqrt(17)+(ln|4+sqrt(17)|)/2 or 9.29 (approximated value)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...