Tuesday, March 22, 2016

Intermediate Algebra, Chapter 4, 4.2, Section 4.2, Problem 28

Solve the system of equations $
\begin{equation}
\begin{aligned}

5x - 2z =& 8 \\
4y + 3z =& -9 \\
\frac{1}{2}x + \frac{2}{3}y =& -1

\end{aligned}
\end{equation}
$.


$
\begin{equation}
\begin{aligned}

15x \phantom{+8y} - 6z =& 24
&& 3 \times \text{ Equation 1}
\\
\phantom{15x + } 8y + 6z =& -18
&& 2 \times \text{ Equation 2}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

15x + 8y \phantom{+ 6z} =& 6
&& \text{Add}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

15x + 8y =& 6
&& \text{Equation 4}
\\
\frac{1}{2}x + \frac{2}{3}y =& -1
&& \text{Equation 3}


\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

15x + 8y =& 6
&& \text{Equation 4}
\\
-6x - 8y =& 12
&& 12 \times \text{ Equation 3}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

9x \phantom{-8y} =& 18
&& \text{Add}
\\
x =& 2
&& \text{Divide each side by $9$}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

5(2) - 2z =& 8
&& \text{Substitute } x = 2 \text{ in Equation 1}
\\
10 - 2z =& 8
&& \text{Multiply}
\\
-2z =& -2
&& \text{Subtract each side by $10$}
\\
z =& 1
&& \text{Divide each side by $-2$}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

4y + 3(1) =& -9
&& \text{Substitute } z = 1 \text{ in Equation 2}
\\
4y + 3 =& -9
&& \text{Multiply}
\\
4y =& -12
&& \text{Subtract each side by $3$}
\\
y =& -3
&& \text{Divide each side by $-3$}

\end{aligned}
\end{equation}
$



The ordered triple is $\displaystyle \left( 2, -3, 1 \right)$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...