Monday, March 14, 2016

Beginning Algebra With Applications, Chapter 6, Review Exercises, Section Review Exercises, Problem 14

Solve by addition method: $
\begin{equation}
\begin{aligned}

6x+4y =& -3 \\
12x-10y =& -15

\end{aligned}
\end{equation}
$


$
\begin{equation}
\begin{aligned}

-2(6x+4y) =& (-3)(-2)
&& \text{Eliminate $x$: Multiply each side of equation 1 by -2}
\\
\\
12x-10y =& -15
&&
\\
\\
-12x-8y =& 6
&&
\\
\\
12x-10y =& -15
&&
\\
\\
\hline
\\
\\
-18y =& -9
&& \text{Add the equations}
\\
\\
y =& \frac{-9}{-18}
&& \text{Solve for } y
\\
\\
y =& \frac{1}{2}
&&

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

6x + 4 \left( \frac{1}{2} \right) =& -3
&& \text{Substitute the value of $y$ in equation 1}
\\
\\
6x + 2 =& -3
&& \text{Solve for } x
\\
\\
6x =& -5
&&
\\
\\
x =& \frac{-5}{6}
&&

\end{aligned}
\end{equation}
$



The solution is $\displaystyle \left( \frac{-5}{6}, \frac{1}{2}
\right)$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...