Monday, March 14, 2016

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 60

Find the 1st and 2nd derivatives of $\displaystyle f(x) = \frac{1}{3-x}$


$
\begin{equation}
\begin{aligned}
f'(x) &= \frac{(3-x) \frac{d}{dx} (1) - \left[ (1) \frac{d}{dx}(3-x)\right]}{(3-x)^2} &&
\text{(Using Quotient Rule)}\\
f'(x) &= \frac{(3-x)(0)-(1)(-1)}{(3-x)^2} &&
\text{(Simplify the equation)}\\
\end{aligned}
\end{equation}
$


The first derivative of $f(x)$ is $\displaystyle f'(x) = \frac{1}{(3-x)^2}$


$
\begin{equation}
\begin{aligned}
f''(x) &= \frac{(3-x)^2 \frac{d}{dx}(1) - \left[ (1) \frac{d}{dx} (3-x)^2\right]}{[(3-x)^2]^2} &&
\text{(Using Quotient Rule)}\\
f''(x) &= \frac{(3-x)^2(0)-(1)(2)(-1)}{(3-x)^4} &&
\text{(Simplify the equation)}\\
\end{aligned}
\end{equation}
$


The second derivative of $f(x)$ is $\displaystyle f''(x) = \frac{2}{(3-x)^4}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...