Thursday, March 31, 2016

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 28

Evaluate $\displaystyle \int^2_1 \frac{(mx)^2}{x^3} dx$ by using Integration by parts.
If we let $u = mx$, then $e^u = x$ and $\displaystyle du = \frac{1}{dx} dx$ we must also make the upper and lower limits in terms of $u$, so...

$
\begin{equation}
\begin{aligned}
\text{so } \int^2_1 \frac{(\ln x)^2}{x^3} dx &= \int^{\ln(2)}_{\ln(1)} \frac{u^2}{(e^u)^3} x du = \int^{\ln 2}_0 \frac{u^2}{(eu)^3} (e^u) du\\
\\
&= \int^{\ln 2}_0 \frac{u^2}{e^{2u}} du
\end{aligned}
\end{equation}
$


To evaluate $\displaystyle \int^{\ln 2}_0 \frac{u^2}{e^{2u}} du$ we must use integration by parts. Then,
if we let $u_1 = u^2$ and $dv_1 = e^{-2u} du$
$du_1 = 2u du$ and $\displaystyle v_1 = \int e^{-2u} du = -\frac{1}{2} e^{-2u}$

So,

$
\begin{equation}
\begin{aligned}
\int^{\ln 2}_0 \frac{u^2}{e^{2u}} du = u_1 v_1 - \int v_1 du_1 &= - \frac{u^2}{2} e^{-2u} - \int -\frac{1}{2} e^{-2u} (2u du)\\
\\
&= -\frac{u^2}{2} e^{-2u} + \int ue^{-2u} du
\end{aligned}
\end{equation}
$

To evaluate $\displaystyle \int ue^{-2u} du$, we must use integration by parts once more, so...
If we let $u_2 = i$ and $dv_2 e^{-2u} du$, then
$du_2 = du$ and $\displaystyle v_2 = \int e^{-2u} du = -\frac{1}{2}e^{-2u}$

So,

$
\begin{equation}
\begin{aligned}
\int ue^{-2u} du = u_2 v_2 - \int v_2 du_2 &= -\frac{u}{2} e^{-2u} - \int \left( -\frac{1}{2}e^{-2u} \right) (du)\\
\\
&= -\frac{u}{2} e^{-2u} + \frac{1}{2} \int e^{-2u} du\\
\\
&= -\frac{u}{2} e^{-2u} + \frac{1}{2} \left( -\frac{1}{2} e^{-2u}\right)\\
\\
&= -\frac{u}{2} e^{-2u} - \frac{1}{4} e^{-2u}
\end{aligned}
\end{equation}
$


Going back to the first equation,

$
\begin{equation}
\begin{aligned}
\int^{\ln 2}_0 \frac{u^2}{e^{2u}} &= -\frac{u^2}{2} e^{-2u} + \left[ -\frac{u}{2} e^{-2u} - \frac{1}{4} e^{-2u} \right]\\
\\
&= -\frac{u^2}{2} e^{-2u} -\frac{u}{2}e^{-2u} - \frac{1}{4} e^{-2u}\\
\\
&= -\frac{e^{-2u}}{2} \left( -u^2 - u - \frac{1}{2} \right)
\end{aligned}
\end{equation}
$


Evaluating from 0 to $\ln 2$

$
\begin{equation}
\begin{aligned}
&= \left[ \frac{e^{-2 \ln 2}}{2} \left( -(\ln2)^2 - \ln 2 - \frac{1}{2} \right) \right] - \left[ \frac{e^{-2(0)}}{2} \left( 0^2 - 0 - \frac{1}{2} \right) \right]\\
\\
&= \frac{3}{16} - \frac{1}{8} \left[ (\ln 2)^2 + \ln 2 \right]
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...