Saturday, March 26, 2016

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 40

By using implicit differentiation, show that the tangent to the ellipse $\displaystyle \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $(x_0, y_0)$ is $\displaystyle \frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$

Taking the derivative of the ellipse implicitly we get


$
\begin{equation}
\begin{aligned}

\frac{1}{a^2} (2x) + \frac{1}{b^2} \left( 2y \frac{dy}{dx} \right) =& 0
\\
\\
\frac{dy}{dx} =& \frac{xb^2}{ya^2}

\end{aligned}
\end{equation}
$



Using Point Slope Form @ $(x_0, y_0)$


$
\begin{equation}
\begin{aligned}

y - y_0 =& m(x - x_0)
\\
\\
y - y_0 =& \frac{xb^2}{ya^2} (x - x_0)

\end{aligned}
\end{equation}
$


Multiplying $\displaystyle \frac{y}{b^2}$ on both sides of the equation we have..


$
\begin{equation}
\begin{aligned}

\frac{y}{b^2} (y - y_0) =& \frac{x}{a^2} (x - x_0)
\\
\\
\frac{y^2}{b^2} - \frac{yy_0}{b^2} =& \frac{x^2}{a^2} - \frac{xx_0}{a^2}
\\
\\
\frac{xx_0}{a^2} - \frac{yy_0}{b^2} =& \frac{x^2}{a^2} - \frac{y^2}{b^2}

\end{aligned}
\end{equation}
$


From the given equation, we know that $\displaystyle \left( \frac{x^2}{a^2} - \frac{y^2}{b^2} \right) = 1$ so..

$\displaystyle \frac{xx_0}{a^2} - \frac{yy_0}{b^2} = 1$\

Hence, the equation of the tangent line at point $(x_0, y_0)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...