Sunday, March 6, 2016

Calculus of a Single Variable, Chapter 8, 8.6, Section 8.6, Problem 34

Indefinite integral follows the formula: int f(x) dx = F(x)+C
where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as constant of integration.
The given integral problem: int sqrt ((5-x)/(5+x))dxresembles one of the formulas from the integration table. It follows the integration formula for rational function with roots as:
int sqrt(x/(a-x)) =-sqrt(x(a-x)) - a* arctan(sqrt(x(a-x))/(x-a))+C
For easier comparison, we may apply u-substitution by letting: u =5-x rearrange into x = 5-u .
The derivative of u will be du = -1 dx rearrange into -du = dx .
Plug -in the value on the integral problem, we get:
int sqrt ((5-x)/(5+x)) dx =int sqrt (u/(5+(5-u)) )* (-du)
=int -sqrt (u/(5+5-u)) du
=int -sqrt (u/(10-u)) du
Apply the basic integration property: int c*f(x) dx = c int f(x) dx .
int -sqrt (u/(10-u)) du=(-1)int sqrt (u/(10-u)) du
By comparing "a-x " with "10-u ", we determine the corresponding value: a=10 .
Applying the aforementioned formula for rational function with roots, we get:
(-1)int sqrt (u/(10-u)) du = (-1) *[-sqrt(u(10-u)) - 10* arctan(sqrt(u(10-u))/(u-10))]+C
=sqrt(u(10-u)) + 10* arctan(sqrt(u(10-u))/(u-10))+C
Plug-in u =5-x on sqrt(u(10-u)) + 10* arctan(sqrt(u(10-u))/(u-10))]+C , we get the indefinite integral as:
int sqrt ((5-x)/(5+x)) dx =sqrt((5-x)(10-(5-x))) + 10* arctan(sqrt((5-x)(10-(5-x)))/((5-x)-10))+C
=sqrt((5-x)(10-5+x)) + 10* arctan(sqrt((5-x)(10-5+x))/(5-x-10))+C
=sqrt((5-x)(5+x)) + 10 arctan(sqrt((5-x)(5+x))/(-x-5))+C
= sqrt(25-x^2) + 10 arctan(sqrt(25-x^2)/(-x-5))+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...