Wednesday, December 2, 2015

Single Variable Calculus, Chapter 4, 4.1, Section 4.1, Problem 32

Determine the critical numbers of the function $f(x) = x^3 + x^2 + x$


$
\begin{equation}
\begin{aligned}

f'(x) =& \frac{d}{dx} (x^3) + \frac{d}{dx} (x^2) + \frac{d}{dx} (x)
\\
\\
f'(x) =& 3x^2 + 2x + 1

\end{aligned}
\end{equation}
$


Solving for critical numbers


$
\begin{equation}
\begin{aligned}

f'(x) =& 0
\\
\\
0 =& 3x^2 + 2x + 1

\end{aligned}
\end{equation}
$


Using Quadratic Equation to solve for $x$


$
\begin{equation}
\begin{aligned}

x =& \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \quad ax^2 + bx + c = 0
\\
\\
x =& \frac{-2 \pm \sqrt{(2)^2 - (4)(3)(1)}}{2(3)}
\\
\\
x =& \frac{-2 \pm \sqrt{4 - 12}}{6}
\\
\\
x =& \frac{-2 \pm \sqrt{-8}}{6}

\end{aligned}
\end{equation}
$


The derivative of the function has no real solution.

Therefore, there are no critical numbers.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...