Thursday, December 24, 2015

College Algebra, Chapter 7, 7.4, Section 7.4, Problem 26

Determine the determinant of the matrix $\displaystyle \left[ \begin{array}{cccc}
1 & 2 & 0 & 2 \\
3 & -4 & 0 & 4 \\
0 & 1 & 6 & 0 \\
1 & 0 & 2 & 0
\end{array} \right]$. State whether the matrix has an inverse, but don't calculate the inverse.

Let

$ A = \displaystyle \left[ \begin{array}{cccc}
1 & 2 & 0 & 2 \\
3 & -4 & 0 & 4 \\
0 & 1 & 6 & 0 \\
1 & 0 & 2 & 0
\end{array} \right]$

$\displaystyle \det (A) = \left[ \begin{array}{cccc}
1 & 2 & 0 & 2 \\
3 & -4 & 0 & 4 \\
0 & 1 & 6 & 0 \\
1 & 0 & 2 & 0
\end{array} \right] = 0 \left| \begin{array}{ccc}
2 & 0 & 2 \\
-4 & 0 & 4 \\
0 & 2 & 0
\end{array} \right| - 1 \left| \begin{array}{ccc}
1 & 0 & 2 \\
3 & 0 & 4 \\
1 & 2 & 0
\end{array} \right|
+ 6 \left| \begin{array}{ccc}
1 & 2 & 2 \\
3 & -4 & 4 \\
1 & 0 & 0
\end{array} \right|
+ 0 \left| \begin{array}{ccc}
1 & 2 & 0 \\
3 & -4 & 0 \\
1 & 0 & 2
\end{array} \right|
$

$\displaystyle \det (A) = -1 \left| \begin{array}{ccc}
1 & 0 & 2 \\
3 & 0 & 4 \\
1 & 2 & 0
\end{array} \right| + 6 \left| \begin{array}{ccc}
1 & 2 & 2 \\
3 & -4 & 4 \\
1 & 0 & 0
\end{array} \right|$

$\displaystyle \det (A) = -1 \left[ 1 (0 \cdot 0 - 4 \cdot 2) - 0 (3 \cdot 0 - 4 \cdot 1) + 2 (3 \cdot 2 - 1 \cdot 0) \right] + 6 \left[ 1 (-4 \cdot 0 - 4 \cdot 0) - 2 (3 \cdot 0 - 4 \cdot 1) + 2 (3 \cdot 0 - (-4) \cdot 1) \right]$

$\displaystyle \det (A) = -4 + 96$

$\displaystyle \det (A) = 92$

The given matrix has an inverse.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...