Friday, December 11, 2015

dP - kPdt = 0 , P(0) = P_0 Find the particular solution of this differential equation that satisfies the given initial condition.

In the following answer, I assume that k and P_0 are constants.
Then, the given differential equation can be solved by separation of variables:
dP - kPdt = 0
dP = kPdt
Dividing by P results in
(dP)/P = kdt .
Integrating both sides, we obtain
lnP = kt + C , where C is an arbitrary constant. We can now solve for P(t) by rewriting the natural logarithmic equation as an exponential (with the base e) equation:
P = e^(kt + C) .
So, the general solution of the equation is P(t) = e^(kt + C) . Since the initial condition is P(0) = P_0 , we can find C:
P(0) = e^(0 + C) = e^C = P_0 . Therefore,
P(t) = e^(kt)*e^C = P_0e^(kt)
The particular solution of the equation with the given initial condition is
P(t) = P_0e^(kt)
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...