Wednesday, December 16, 2015

College Algebra, Chapter 9, 9.6, Section 9.6, Problem 28

Expand the expression $(2A + B^2)^4$ using the Binomial Theorem
Recall that the Binomial Theorem is defined as

$
(2A + B^2)^4
=
\left(
\begin{array}{c}
4\\
0
\end{array}
\right)
(2A)^4 +
\left(
\begin{array}{c}
4\\
1
\end{array}
\right)
(2A)^3(B^2) +
\left(
\begin{array}{c}
4\\
2
\end{array}
\right)
(2A)^2(B^2)^2 +
\left(
\begin{array}{c}
4\\
3
\end{array}
\right)
(2A)(B^2)^3 +
\left(
\begin{array}{c}
4\\
4
\end{array}
\right)
(B^2)^4
$

From the 4th row of the Pascal's Triangle,

$
\left(
\begin{array}{c}
4\\
0
\end{array}
\right)
= 1,
\quad
\left(
\begin{array}{c}
4\\
1
\end{array}
\right)
= 4.
\quad
\left(
\begin{array}{c}
4\\
2
\end{array}
\right)
= 6,
\quad
\left(
\begin{array}{c}
4\\
3
\end{array}
\right)
= 4,
\quad
\left(
\begin{array}{c}
4\\
4
\end{array}
\right)
=1
$

Thus,

$
\begin{equation}
\begin{aligned}
(2A + B^2)^4 &= (1)(2A)64 + (4)(2A)^3 (B^2) + (6)(2A)^2(B^2)^2 + (4)(2A)(B^2)^3 + (1) (B^2)^4\\
\\
&= 16A^4 + 32 A^3 B^2 + 24 A^2 B^4 + 8AB^6 + B^8
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...