Wednesday, December 9, 2015

College Algebra, Chapter 1, 1.1, Section 1.1, Problem 26

The equation $\displaystyle \frac{2}{3} y + \frac{1}{2} (y - 3) = \frac{y+1}{4}$ is either linear or equivalent to a linear equation. Solve the equation

$
\begin{equation}
\begin{aligned}
\frac{2}{3} y + \frac{1}{2} (y - 3) &= \frac{y+1}{4} && \text{Apply Distributive proeperty}\\
\\
\frac{2y}{3} + \frac{y-3}{2} &= \frac{y+1}{4} && \text{Get the LCD of the left side}\\
\\
\frac{4y + 3y -9}{6} &= \frac{y+1}{4} && \text{Simplify}\\
\\
\frac{7y-9}{6} &= \frac{y+1}{4} && \text{Group}\\
\\
\frac{7y}{6} - \frac{9}{6} &= \frac{y}{4} + \frac{1}{4} && \text{Combine like terms}\\
\\
\frac{7y}{6} - \frac{y}{4} &= \frac{9}{6} + \frac{1}{4} && \text{Get the LCD of both sides}\\
\\
\frac{14y-3y}{12} &= \frac{18+3}{12} && \text{Simplify}\\
\\
\frac{11y}{12} &= \frac{21}{12} && \text{Multiply both sides by 12}\\
\\
\cancel{12} & \left[\frac{11y}{\cancel{12}} = \frac{21}{\cancel{12}} \right] \cancel{12} && \text{Simplify}\\
\\
11y &= 21 && \text{Divide both sides by 11}\\
\\
\frac{\cancel{11}y}{\cancel{11}} &= \frac{21}{11} && \text{Simplify}\\
\\
y &= \frac{21}{11}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...