Wednesday, December 23, 2015

Calculus of a Single Variable, Chapter 8, 8.2, Section 8.2, Problem 15

Recall that indefinite integral follows int f(x) dx = F(x) +C where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as the constant of integration.
For the given integral problem: int t ln(t+1) dt , we may apply u-substitution by letting:
u = t+1 that can be rearrange as t = u-1 .
The derivative of u is du= dt .
Plug-in the values, we get:
int t ln(t+1) dt= int (u-1) ln(u) du
Apply integration by parts: int f*g'=f*g - int g*f' .
We may let:
f =ln(u) then f' =(du)/u
g' =u-1 du then g=u^2/2 -u
Note: g =int g' = int (u+1) du .
int (u-1) du =int (u) du- int (1) du
= u^(1+1)/(1+1) - 1u
= u^2/2 - u
Applying the formula for integration by parts, we set it up as:
int (u-1) ln(u) du = ln(u) * (u^2/2-u) - int(u^2/2-u) *(du)/u
=(u^2ln(u))/2-u*ln(u) - int(u^2/(2u)-u/u) du
=(u^2ln(u))/2-u*ln(u) - int(u/2-1) du
For the integral part: int (u/2-1) du, we apply the basic integration property: int (u-v) dx = int (u) dx - int (v) dx .
int(u/2-1) du=int(u/2) du-int (1) du
= 1/2 int u - 1 int du
= 1/2*(u^2/2) - 1*u+C
= u^2/4 -u+C
Applying int(u/2-1) du=u^2/4 -u+C , we get:
int (u-1) ln(u) du =(u^2ln(u))/2-uln(u) - int(u/2-1) du
=(u^2ln(u))/2-u*ln(u) - [u^2/4 -u]+C
=(u^2ln(u))/2-u*ln(u) - u^2/4 +u+C
Plug-in u = t+1 on (u^2ln(u))/2-u*ln(u) - u^2/4 +u+C , we get the complete indefinite integral as:
int t ln(t+1) dt=((t+1)^2ln(t+1))/2-(t+1)ln(t+1) - (t+1)^2/4 +t+1+C
OR [(t+1)^2/2-t-1]ln(t+1) - (t+1)^2/4 +t+1+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...