Sunday, December 6, 2015

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 51

a.) Illustrate the graph of the function $f(x) = x|x|$.
b.) For what values of $x$ is $f$ differentiable.
c.) Find a formula for $f'$

a.)



b.) Using the definition of absolute value,

$
f(x) = \left\{
\begin{array}{c}
x(x) & \text{if} & x \geq 0\\
x(-x) & \text{if} & x < 0
\end{array}\right.

\qquad
\Longrightarrow
\qquad

f(x) = \left\{
\begin{array}{c}
x^2 & \text{if} & x \geq 0\\
-x^2 & \text{if} & x < 0
\end{array}\right.
$


Let's Check if the function is differentiable at $x=0$
By definition,
$\quad \displaystyle f'_- (x) = \lim\limits_{h \to 0^-} \frac{f(x+h)-f(x)}{h}
\qquad \text{ and } \qquad
\displaystyle f'_+ (x) = \lim\limits_{h \to 0^+} \frac{f(x+h)-f(x)}{h}$

For Right Hand,

$
\begin{equation}
\begin{aligned}
f'_+ (x) &= \lim\limits_{h \to 0^+} \frac{(x+h)^2-x^2}{h}\\
f'_+ (x) &= \lim\limits_{h \to 0^+} \frac{\cancel{x^2}+2xh+h^2-\cancel{x^2}}{h}\\
f'_+ (x) &= \lim\limits_{h \to 0^+} \frac{\cancel{h}(2x+h)}{\cancel{h}}\\
f'_+ (x) &= \lim\limits_{h \to 0^+} 2x+h\\
f'_+ (x) &= 2x+0\\
f'_+ (x) &= 2x\\
f'_+ (0) &= 2(0) = 0\\
f'_+ (0) &= 0
\end{aligned}
\end{equation}
$


For Left Hand,


$
\begin{equation}
\begin{aligned}
f'_- (x) &= \lim\limits_{h \to 0^-} \frac{-(x+h)^2-(-x^2)}{h}\\
f'_- (x) &= \lim\limits_{h \to 0^-} \frac{-\cancel{x^2}-2xh-h^2+\cancel{x^2}}{h}\\
f'_- (x) &= \lim\limits_{h \to 0^-} \frac{\cancel{h}(-2x-h)}{\cancel{h}}\\
f'_- (x) &= \lim\limits_{h \to 0^-} (-2x-h)\\
f'_- (x) &= -2x-0\\
f'_- (x) &= -2x\\
f'_- (0) &= -2(0) = 0\\
\end{aligned}
\end{equation}
$


The derivative from the right hand is equal to the derivative of left hand. $f'_+(0) = f'_-(0)$

Therefore,
The function $f(x) = x|x|$ is differentiable everywhere.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...