Thursday, December 3, 2015

Calculus of a Single Variable, Chapter 9, 9.3, Section 9.3, Problem 10

For the series: ln(2)/sqrt(2) + ln(3)/sqrt(3)+ ln(4)/sqrt(4)+ ln(5)/sqrt(5)+ ln(6)/sqrt(6) +..., it follows the formula sum_(n=2)^oo ln(n)/sqrt(n) where a_n = ln(n)/sqrt(n) . To confirm if the Integral test will be applicable, we let f(x) = ln(x)/sqrt(x) .
Graph of the function f(x) :

Maximize view:
As shown on the graphs, f is positive and continuous on the finite interval [1,oo) . To verify if the function will eventually decreases on the given interval, we may consider derivative of the function.
Apply Quotient rule for derivative: d/dx(u/v) = (u'* v- v'*u)/v^2 .
Let u = ln(x) then u' = 1/x
v = sqrt(x) or x^(1/2) then v' = 1/(2sqrt(x))
Applying the Quotient rule, we get:
f'(x) = (1/x*sqrt(x)-1/(2sqrt(x))*ln(x))/(sqrt(x))^2
= (1/sqrt(x) - ln(x)/(2sqrt(x)))/x
= ((2-ln(x))/sqrt(x))/x
=((2-ln(x))/sqrt(x))* 1/x
=(2-ln(x))/(xsqrt(x))
or (2-ln(x))/x^(3/2)
Note that 2-ln(x) lt0 for higher values of x which means f'(x) lt0.
Aside from this, we may verify by solving critical values of x .
Apply First derivative test: f'(c) =0 such that x =c as critical values.
(2-ln(x))/x^(3/2)=0
2-ln(x)=0
ln(x) =2
x = e^2
x~~7.389
Using f'(7) ~~0.0015 , it satisfy f'(x) gt0 therefore the function is increasing on the left side of x=e^2 .
Using f'(8) ~~-0.0018 , it satisfy f'(x) lt0 therefore the function is decreasing on the right side of x=e^2 .
Then, we may conclude that the function f(x) is decreasing for an interval [8,oo) .
This confirms that the function is ultimately positive, continuous, and decreasing for an interval [8,oo) . Therefore, we may apply the Integral test.
Note: Integral test is applicable if f is positive, continuous , and decreasing function on interval [k, oo) and a_n=f(x) . Then the series sum_(n=k)^oo a_n converges if and only if the improper integral int_k^oo f(x) dx converges. If the integral diverges then the series also diverges.
To determine the convergence or divergence of the given series, we may apply improper integral as:
int_8^oo ln(x)/sqrt(x)dx = lim_(t-gtoo)int_8^tln(x)/sqrt(x)dx
or lim_(t-gtoo)int_8^tln(x)/x^(1/2)dx
To determine the indefinite integral of int_8^tln(x)/x^(1/2)dx , we may apply integration by parts: int u dv = uv - int v du
u = ln(x) then du = 1/x dx .
dv = 1/x^(1/2) dx then v= int 1/x^(1/2)dx = 2sqrt(x)
Note: To determine v, apply Power rule for integration int x^n dx = x^(n+1)/(n+1).
int 1/x^(1/2)dx =int x^(-1/2)dx
=x^(-1/2+1)/(-1/2+1)
=x^(1/2)/(1/2)
=x^(1/2)*2/1
=2x^(1/2) or 2 sqrt(x)
The integral becomes:
int_8^t ln(x)/sqrt(x) dx=ln(x) * 2 sqrt(x) - int 2sqrt(x) *1/x dx
=2sqrt(x)ln(x) - int 2x^(1/2) *x^(-1) dx
=2sqrt(x)ln(x) - int 2x^(-1/2) dx
=2sqrt(x)ln(x) - 2int x^(-1/2) dx
= [ 2sqrt(x)ln(x)- 2(2sqrt(x))]|_8^t
= [2sqrt(x)ln(x) - 4sqrt(x)]|_8^t
Apply definite integral formula: F(x)|_a^b = F(b) - F(a) .
[2sqrt(x)ln(x) - 4sqrt(x)]|_8^t =[2sqrt(t)ln(t) - 4sqrt(t)] - [2sqrt(8)ln(8) - 4sqrt(8)]
=2sqrt(t)ln(t) - 4sqrt(t) - 2sqrt(8)ln(8) + 4sqrt(8)
=2sqrt(t)ln(t) - 4sqrt(t) - 4sqrt(2)ln(8) + 8sqrt(2)
Note: sqrt(8) = 2sqrt(2)
Applying int_8^t ln(x)/sqrt(x) dx=2sqrt(t)ln(t) - 4sqrt(t) - 4sqrt(2)ln(8) + 8sqrt(2) , we get:
lim_(t-gtoo)int_2^tln(x)/sqrt(x)dx =lim_(t-gtoo) [2sqrt(t)ln(t) - 4sqrt(t) - 4sqrt(2)ln(8) + 8sqrt(2)]
=lim_(t-gtoo) 2sqrt(t)ln(t) - lim_(t-gtoo)4sqrt(t) - lim_(t-gtoo)4sqrt(2)ln(8) + lim_(t-gtoo) 8sqrt(2)
= oo-oo -4sqrt(2)ln(8) +8sqrt(2)
=oo
The lim_(t-gtoo)int_8^tln(x)/sqrt(x)dx=oo implies that the integral diverges.
Conclusion:
The integral int_8^ooln(x)/sqrt(x)dx is divergent therefore the seriessum_(n=2)^ooln(n)/sqrt(n) must also be divergent.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...