Saturday, June 7, 2014

Single Variable Calculus, Chapter 2, 2.4, Section 2.4, Problem 27

Show that the statement $\displaystyle\lim\limits_{x \to 0} |x| = 0$ is correct using the $\varepsilon$, $\delta$ definition of limit.

Based from the defintion,


$
\begin{equation}
\begin{aligned}

\phantom{x} \text{if } & 0 < |x - a| < \delta
\qquad \text{ then } \qquad
|f(x) - L| < \varepsilon\\

\phantom{x} \text{if } & 0 < |x-0| < \delta
\qquad \text{ then } \qquad
||x|-0| < \varepsilon\\

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
& \text{That is,}\\
& \phantom{x} & \text{ if } 0 < |x| < \delta \qquad \text{ then } \qquad ||x|| < \varepsilon\\
\end{aligned}
\end{equation}
$

But according to the the property of absolute value, we write
$\quad ||x|| < \varepsilon \Rightarrow |x| < \varepsilon \qquad$ (Idempotence, where the absolute value of the absolute value is equal to the absolute value)

So,
$\quad \text{if } \, 0 < |x| < \delta \quad \text{ then } \quad |x| < \varepsilon$

Therefore,
$\quad \lim\limits_{x \to 0} |x| = 0$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...