Monday, June 16, 2014

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 49

Find the points at which the ellipse $x^2 - xy + y^2 = 3$ crosses the $x$-axis and show that the tangent lines at these points are parallel.

The ellipse crosses the $x$-axis at $y = 0$ so...


$
\begin{equation}
\begin{aligned}

x^2 - xy + y^2 =& 3
\\
\\
x^2 - x(0) + (0)^2 =& 3
\\
\\
x^2 =& 3
\\
\\
x =& \pm \sqrt{3}


\end{aligned}
\end{equation}
$


Taking the derivative of the curve implicitly we have,

$x^2 - xy + y^2 = 3$


$
\begin{equation}
\begin{aligned}

\frac{d}{dx} (x^2) - \frac{d}{dx} (xy) + \frac{d}{dx} (y^2) =& \frac{d}{dx} (3)
\\
\\
2x - \left[ \frac{d}{dx} (x) \cdot y + x \cdot \frac{d}{dx} (y) \right] + \frac{d}{dy} (y^2) \frac{dy}{dx} =& 0
\\
\\
2x - \left[ y + x \frac{dy}{dx} \right] + 2y \frac{dy}{dx} =& 0
\\
\\
2x - y - x \frac{dy}{dx} + 2y \frac{dy}{dx} =& 0
\\
\\
\frac{dy}{dx} =& \frac{2x - y}{x - 2y}


\end{aligned}
\end{equation}
$


@ $x = \sqrt{3}$


$
\begin{equation}
\begin{aligned}

\frac{dy}{dx} =& \frac{2 (\sqrt{3}) - 0}{\sqrt{3} - 2 (0)}
\\
\\
\frac{dy}{dx} =& \frac{2 \cancel{\sqrt{3}} }{\cancel{\sqrt{3}}}
\\
\\
\frac{dy}{dx} =& 2

\end{aligned}
\end{equation}
$


@ $x = - \sqrt{3}$


$
\begin{equation}
\begin{aligned}

\frac{dy}{dx} =& \frac{2 (-\sqrt{3}) - 0}{-\sqrt{3} - 2 (0)}
\\
\\
\frac{dy}{dx} =& \frac{2 (\cancel{-\sqrt{3})} }{\cancel{-\sqrt{3}}}
\\
\\
\frac{dy}{dx} =& 2

\end{aligned}
\end{equation}
$


The slopes are equal. Therefore, the tangent lines are parallel.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...