Monday, June 16, 2014

College Algebra, Chapter 3, Review Exercises, Section Review Exercises, Problem 76

If $f(x) = 1 + x^2$ and $g(x) = \sqrt{x-1}$, find the following.

$
\begin{equation}
\begin{aligned}
&\text{a.) } f \circ g &&& &\text{b.) } g \circ f\\
\\
&\text{c.) } (f \circ g)(2) &&& &\text{d.) } (f \circ f) (2) \\
\\
&\text{e.) } f \circ g \circ f &&& &\text{f.) } g \circ f \circ g
\end{aligned}
\end{equation}
$


a.) $f \circ g = f(g(x)) = f(\sqrt{x-1}) = 1 + (\sqrt{x-1})^2 = 1 + x - 1 = x$
b.) $g \circ f = g(f(x)) = g(1+x^2) = \sqrt{1+x^2-1} = \sqrt{x^2} = x$
c.) $(f \circ g)(2) = 2$
d.) $(f \circ f)(2)$

$
\begin{equation}
\begin{aligned}
f \circ f = f(f(x)) = f(1 + x^2) &= 1 + (1 + x^2)^2\\
\\
&= 1 + 1 + 2x^2 + x^4\\
\\
&= x^4 + 2x^2 + 2 \\
\\
(f \circ f)(2) &= (2)^4 + 2(2)^2 + 2\\
\\
&= 26
\end{aligned}
\end{equation}
$


$
\begin{equation}
\begin{aligned}
\text{e.) } f \circ g \circ f &= f(g(f(x)))\\
\\
&= f(g(1+x^2))\\
\\
&= f\left(\sqrt{1+x^2-1}\right)\\
\\
&= f\left(\sqrt{x^2}\right)\\
\\
&= f(x) \\
\\
&= 1 + x^2
\end{aligned}
\end{equation}
$


$
\begin{equation}
\begin{aligned}
\text{f.) } g \circ f \circ g &= g(f(g(x)))\\
\\
&= g(f(\sqrt{x-1}))\\
\\
&= g\left(1 + (\sqrt{x-1})^2\right)\\
\\
&= g(1 + x -1 )\\
\\
&= g(x) \\
\\
&= \sqrt{x-1}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...