Thursday, June 12, 2014

Calculus of a Single Variable, Chapter 8, 8.2, Section 8.2, Problem 57

To evaluate the given integral problem int x^5e^((x^2))dx using u-substituion, we may let:
u = x^2 then du = 2x dx or (du)/2 = x dx
Note that x^5 = x^2*x^2*x or (x^2)^2 *x then
x^5dx = (x^2)^2 * x dx
Then, the integral becomes:
int x^5e^((x^2))dx =int (x^2)^2 * e^((x^2)) * xdx
Plug-in u = x^2 then du = 2x dx , we get:
int (x^2)^2 * e^((x^2)) * xdx =int (u)^2 * e^(u) * (du)/2
Apply the basic integration property: int c*f(x) dx = c int f(x) dx .
int (u)^2 * e^(u) * (du)/2= 1/2int (u)^2 * e^(u) du
Apply formula for integration by parts: int f*g'=f*g - int g*f' .
Let: f =u^2 then f' =2udu
g' =e^u du then g=e^u
Applying the formula for integration by parts, we get:
1/2int (u)^2 * e^(u) du =1/2*[ u^2 *e^u - int e^u * 2u du]
=1/2*[ u^2 e^u - 2 int e^u *u du]
= ( u^2 e^u )/2- 2/2 int e^u *u du
= ( u^2 e^u )/2- int e^u *u du
Apply another set of integration by parts on int e^u *u du by letting:
f =u then f’ = du
g’ = e^u du then g = e^u
Then,
int e^u *u du = u*e^u - int e^u du
= ue^u - e^u+C
Applying int e^u *u du =ue^u - e^u+C , we get:
1/2int (u)^2 * e^(u) du =( u^2 e^u )/2- int e^u *u du
=( u^2 e^u )/2-[ue^u - e^u] +C
=( u^2 e^u )/2-ue^u + e^u +C
Plug-in u = x^2 on ( u^2 e^u )/2-ue^u + e^u +C , we get the complete indefinite integral as:
int x^5e^((x^2))dx =((x^2)^2 e^((x^2)) )/2-x^2e^((x^2)) + e^((x^2)) +C
= (x^4 e^(x^2) )/2-x^2e^(x^2) + e^(x^2) +C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...